A tactile sensor is a device that measures information arising from physical interaction with its environment. Tactile sensors are generally modeled after the biological sense of cutaneous touch which is capable of detecting stimuli resulting from mechanical stimulation, temperature, and pain (although pain sensing is not common in artificial tactile sensors). Tactile sensors are used in robotics, computer hardware and security systems. A common application of tactile sensors is in touchscreen devices on mobile phones and computing.
Tactile sensors may be of different types including piezoresistive, piezoelectric, optical, capacitive and elastoresistive sensors.
Tactile sensors appear in everyday life such as elevator buttons and lamps which dim or brighten by touching the base. There are also innumerable other applications for tactile sensors of which most people are never aware.
Sensors that measure very small changes must have very high sensitivities. Sensors need to be designed to have a small effect on what is measured; making the sensor smaller often improves this and may introduce other advantages. Tactile sensors can be used to test the performance of all types of applications. For example, these sensors have been used in the manufacturing of automobiles (brakes, clutches, door seals, gasket), battery lamination, bolted joints, fuel cells etc.
Tactile imaging, as a medical imaging modality, translating the sense of touch into a digital image is based on the tactile sensors. Tactile imaging closely mimics manual palpation, since the probe of the device with a pressure sensor array mounted on its face acts similar to human fingers during clinical examination, deforming soft tissue by the probe and detecting resulting changes in the pressure pattern.
Robots designed to interact with objects requiring handling involving precision, dexterity, or interaction with unusual objects, need sensory apparatus which is functionally equivalent to a human's tactile ability. Tactile sensors have been developed for use with robots.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Comprendre les principes physiques utilisés dans les capteurs. Vue générale des différents principes de transduction et de l'électronique associée. Montrer des exemples d'application.
Fundamental principles and methods used for physiological signal conditioning. Electrode, optical, resistive, capacitive, inductive, and piezoelectric sensor techniques used to detect and convert phys
Lead zirconate titanate, also called lead zirconium titanate and commonly abbreviated as PZT, is an inorganic compound with the chemical formula It is a ceramic perovskite material that shows a marked piezoelectric effect, meaning that the compound changes shape when an electric field is applied. It is used in a number of practical applications such as ultrasonic transducers and piezoelectric resonators. It is a white to off-white solid. Lead zirconium titanate was first developed around 1952 at the Tokyo Institute of Technology.
A touchscreen or touch screen is the assembly of both an input ('touch panel') and output ('display') device. The touch panel is normally layered on the top of an electronic visual display of an electronic device. The display is often an LCD, AMOLED or OLED display. A user can give input or control the information processing system through simple or multi-touch gestures by touching the screen with a special stylus or one or more fingers. Some touchscreens use ordinary or specially coated gloves to work, while others may only work using a special stylus or pen.
Piezoelectricity (ˌpiːzoʊ-,_ˌpiːtsoʊ-,_paɪˌiːzoʊ-, piˌeɪzoʊ-,_piˌeɪtsoʊ-) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived (an ancient source of electric current). The piezoelectric effect results from the linear electromechanical interaction between the mechanical and electrical states in crystalline materials with no inversion symmetry.
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
In this thesis several advances are made to the emerging field of 3D printed mechanical sensors. Techniques and processes were developed to enable the integration of highly conductive, and capacitive and piezoresistive sensing features embedded within 3D p ...
The growing use of aptamers as target recognition elements in label-free biosensing necessitates corresponding transducers that can be used in relevant environments. While popular in many fields, capacitive sensors have seen relatively little, but growing ...
2023
,
Soft robotic sensors have been limited in their applications due to their highly nonlinear time variant behavior. Current studies are either looking into techniques to improve the mechano-electrical properties of these sensors or into modelling algorithms ...
Institute of Electrical and Electronics Engineers Inc.2021