In electrical engineering and computer science, Lloyd's algorithm, also known as Voronoi iteration or relaxation, is an algorithm named after Stuart P. Lloyd for finding evenly spaced sets of points in subsets of Euclidean spaces and partitions of these subsets into well-shaped and uniformly sized convex cells. Like the closely related k-means clustering algorithm, it repeatedly finds the centroid of each set in the partition and then re-partitions the input according to which of these centroids is closest. In this setting, the mean operation is an integral over a region of space, and the nearest centroid operation results in Voronoi diagrams.
Although the algorithm may be applied most directly to the Euclidean plane, similar algorithms may also be applied to higher-dimensional spaces or to spaces with other non-Euclidean metrics. Lloyd's algorithm can be used to construct close approximations to centroidal Voronoi tessellations of the input, which can be used for quantization, dithering, and stippling. Other applications of Lloyd's algorithm include smoothing of triangle meshes in the finite element method.
The algorithm was first proposed by Stuart P. Lloyd of Bell Labs in 1957 as a technique for pulse-code modulation. Lloyd's work became widely circulated but remained unpublished until 1982. A similar algorithm was developed independently by Joel Max and published in 1960, which is why the algorithm is sometimes referred as the Lloyd-Max algorithm.
Lloyd's algorithm starts by an initial placement of some number k of point sites in the input domain. In mesh-smoothing applications, these would be the vertices of the mesh to be smoothed; in other applications they may be placed at random or by intersecting a uniform triangular mesh of the appropriate size with the input domain.
It then repeatedly executes the following relaxation step:
The Voronoi diagram of the k sites is computed.
Each cell of the Voronoi diagram is integrated, and the centroid is computed.
Each site is then moved to the centroid of its Voronoi cell.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. k-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances.
Vector quantization (VQ) is a classical quantization technique from signal processing that allows the modeling of probability density functions by the distribution of prototype vectors. It was originally used for data compression. It works by dividing a large set of points (vectors) into groups having approximately the same number of points closest to them. Each group is represented by its centroid point, as in k-means and some other clustering algorithms.
In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators). For each seed there is a corresponding region, called a Voronoi cell, consisting of all points of the plane closer to that seed than to any other. The Voronoi diagram of a set of points is dual to that set's Delaunay triangulation.
Recently, triangle configuration based bivariate simplex splines (referred to as TCB-spline) have been introduced to the geometric computing community. TCB-splines retain many attractive theoretic properties of classical B-splines, such as partition of uni ...
ELSEVIER SCIENCE SA2019
,
We study the problem of constructing epsilon-coresets for the (k, z)-clustering problem in a doubling metric M(X, d). An epsilon-coreset is a weighted subset S subset of X with weight function w : S -> R->= 0, such that for any k-subset C is an element of ...
K-means is one of the fundamental unsupervised data clustering and machine learning methods. It has been well studied over the years: parallelized, approximated, and optimized for different cases and applications. With increasingly higher parallelism leadi ...