Concept

Cycle space

In graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs. This set of subgraphs can be described algebraically as a vector space over the two-element finite field. The dimension of this space is the circuit rank of the graph. The same space can also be described in terms from algebraic topology as the first homology group of the graph. Using homology theory, the binary cycle space may be generalized to cycle spaces over arbitrary rings. The cycle space of a graph can be described with increasing levels of mathematical sophistication as a set of subgraphs, as a binary vector space, or as a homology group. A spanning subgraph of a given graph G may be defined from any subset S of the edges of G. The subgraph has the same set of vertices as G itself (this is the meaning of the word "spanning") but has the elements of S as its edges. Thus, a graph G with m edges has 2m spanning subgraphs, including G itself as well as the empty graph on the same set of vertices as G. The collection of all spanning subgraphs of a graph G forms the edge space of G. A graph G, or one of its subgraphs, is said to be Eulerian if each of its vertices has an even number of incident edges (this number is called the degree of the vertex). This property is named after Leonhard Euler who proved in 1736, in his work on the Seven Bridges of Königsberg, that a connected graph has a tour that visits each edge exactly once if and only if it is Eulerian. However, for the purposes of defining cycle spaces, an Eulerian subgraph does not need to be connected; for instance, the empty graph, in which all vertices are disconnected from each other, is Eulerian in this sense. The cycle space of a graph is the collection of its Eulerian spanning subgraphs. If one applies any set operation such as union or intersection of sets to two spanning subgraphs of a given graph, the result will again be a subgraph. In this way, the edge space of an arbitrary graph can be interpreted as a Boolean algebra.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.