In elementary algebra, a trinomial is a polynomial consisting of three terms or monomials.
with variables
with variables
with variables
the quadratic polynomial in standard form with variables.
with variables, nonnegative integers and any constants.
where is variable and constants are nonnegative integers and any constants.
A trinomial equation is a polynomial equation involving three terms. An example is the equation studied by Johann Heinrich Lambert in the 18th century.
The quadratic trinomial in standard form (as from above):
sum or difference of two cubes:
A special type of trinomial can be factored in a manner similar to quadratics since it can be viewed as a quadratic in a new variable (xn below). This form is factored as:
where
For instance, the polynomial x2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a1 = −2 and a2 = −1 of the above system gives the trinomial factorization:
x2 + 3x + 2 = (x + a1)(x + a2) = (x + 2)(x + 1).
The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In algebra, a binomial is a polynomial that is the sum of two terms, each of which is a monomial. It is the simplest kind of a sparse polynomial after the monomials. A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form where a and b are numbers, and m and n are distinct non-negative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable.
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: A monomial, also called power product, is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. For example, is a monomial. The constant is a monomial, being equal to the empty product and to for any variable . If only a single variable is considered, this means that a monomial is either or a power of , with a positive integer.