Concept

Empoisonnement au xénon

Dans un réacteur nucléaire, l'empoisonnement au xénon est le phénomène de production et d'accumulation du xénon 135, un puissant absorbeur de neutron, étouffant la réaction nucléaire d'un réacteur à l'arrêt, ou provoquant des oscillations de puissance dans les réacteurs de grande taille. Ce phénomène est un des facteurs ayant conduit à l'accident de Tchernobyl. vignette|centre|1200px|Chaine xénon. Le xénon 135 est un radioisotope (demi-vie : 9,2 h), qui apparaît dans les produits de fission de la fission nucléaire d'une matière fissile (matière employée pour le fonctionnement d'un réacteur nucléaire, uranium 235 ou plutonium pour les réacteurs de troisième génération). Le 135Xe se forme surtout indirectement, par filiation radioactive, principalement à partir de l'iode 135 de période 6,7 h (lequel peut lui-même être produit par la désintégration de l'éphémère Tellure 135, voire en amont par des parents à durée de vie encore plus brève, sans intérêt pour le fonctionnement d'un réacteur nucléaire). Pour mémoire, le 135Xe peut apparaître aussi de manière marginale comme produit de fission direct, avec un rendement de fission de 0,4 % pour l'uranium 235. Dans la fission de l'uranium 235, le rendement de fission pour le poids atomique de 135 est de 6,6 % d'atomes produits par fission d'isotope fissile pour des neutrons thermiques (6,3 % pour des neutrons rapides). Le 135Xe peut donner du césium 135, par décroissance radioactive de période 9,2 h, mais peut également donner en réacteur nucléaire du xénon 136 par capture d'un neutron, quand il est soumis à un flux neutronique. La proportion relative de ces deux consommations dépend du flux de neutrons (donc de la puissance de fonctionnement et du type de réacteur) : plus le flux est important, et moins le xénon aura le temps de se désintégrer en césium avant de capturer un neutron supplémentaire. Par la suite, ces deux noyaux 136Xe et 135Cs sont pratiquement stables et de section efficace négligeable.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
ME-464: Introduction to nuclear engineering
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
Séances de cours associées (27)
Technologie des réacteurs : variations de réactivité et contrôle
Explore les variations de réactivité dans la technologie des réacteurs, couvrant les effets à court, moyen et long terme, les moyens de contrôle et les conséquences.
Technologie des réacteurs : variations de réactivité et contrôle
Explore les variations de réactivité, les mécanismes de contrôle et l'impact de l'effet Doppler sur la température du réacteur.
Physique des neutrons : Principes fondamentaux du réacteur
Explore la physique des neutrons dans les réacteurs nucléaires, couvrant la criticité, les cycles du combustible, les caractéristiques des réacteurs et le ralentissement des processus.
Afficher plus
Publications associées (26)

Atomic level insight into irradiation effects in nuclear fuel materials

Shaileyee Bhattacharya

Microstructural evolution during in-pile irradiation, radiation damage effects and fission products behavior in UO2 nuclear fuel are key issues in understanding and for the modeling of the performance as well as safety characteristics of nuclear fuels in t ...
EPFL2024

Unmoderated molten salt reactors design optimisation for power stability

Andreas Pautz, Axel Guy Marie Laureau, Andrea Bellè

The critical region of unmoderated molten salt reactors consists in a cavity filled with a liquid fuel. The lack of internal structure implies a complex flow structure of the circulating fuel salt. A preliminary core shape optimization has been performed d ...
PERGAMON-ELSEVIER SCIENCE LTD2022

The COLIBRI experimental program in the CROCUS reactor: characterization of the fuel rods oscillator

Andreas Pautz, Vincent Pierre Lamirand, Mathieu Hursin, Carlo Fiorina, Oskari Ville Pakari, Pavel Frajtag, Daniel Godat, Axel Guy Marie Laureau, Adolfo Rais

The present article presents the mechanical characterization of the fuel rods oscillator developed for the purposes of the COLIBRI experimental program in CROCUS. COLIBRI aims at investigating the radiation noise related to fuel vibrations. The main motiva ...
2020
Afficher plus
Concepts associés (7)
Nuclear reactor physics
Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material, releasing both energy and free neutrons.
Nuclear reactor core
A nuclear reactor core is the portion of a nuclear reactor containing the nuclear fuel components where the nuclear reactions take place and the heat is generated. Typically, the fuel will be low-enriched uranium contained in thousands of individual fuel pins. The core also contains structural components, the means to both moderate the neutrons and control the reaction, and the means to transfer the heat from the fuel to where it is required, outside the core.
Réacteur nucléaire à sels fondus
Le réacteur nucléaire à sels fondus (RSF ; molten salt reactor, MSR) est un concept de réacteur nucléaire dans lequel le combustible nucléaire se présente sous forme liquide, dissous dans du sel fondu (à ) qui joue à la fois le rôle de caloporteur et de barrière de confinement. Le réacteur peut être modéré par du graphite (produisant des neutrons thermiques) ou sans modérateur (neutrons rapides). Le concept a été étudié en laboratoire pendant les années 1960, puis délaissé dans les années 1970 faute de financement et malgré des résultats probants.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.