Concept

Physical symbol system

A physical symbol system (also called a formal system) takes physical patterns (symbols), combining them into structures (expressions) and manipulating them (using processes) to produce new expressions. The physical symbol system hypothesis (PSSH) is a position in the philosophy of artificial intelligence formulated by Allen Newell and Herbert A. Simon. They wrote: This claim implies both that human thinking is a kind of symbol manipulation (because a symbol system is necessary for intelligence) and that machines can be intelligent (because a symbol system is sufficient for intelligence). The idea has philosophical roots in Hobbes (who claimed reasoning was "nothing more than reckoning"), Leibniz (who attempted to create a logical calculus of all human ideas), Hume (who thought perception could be reduced to "atomic impressions") and even Kant (who analyzed all experience as controlled by formal rules). The latest version is called the computational theory of mind, associated with philosophers Hilary Putnam and Jerry Fodor. Examples of physical symbol systems include: Formal logic: the symbols are words like "and", "or", "not", "for all x" and so on. The expressions are statements in formal logic which can be true or false. The processes are the rules of logical deduction. Algebra: the symbols are "+", "×", "x", "y", "1", "2", "3", etc. The expressions are equations. The processes are the rules of algebra, that allow one to manipulate a mathematical expression and retain its truth. Chess: the symbols are the pieces, the processes are the legal chess moves, the expressions are the positions of all the pieces on the board. A computer running a program: the symbols and expressions are data structures, the process is the program that changes the data structures. The physical symbol system hypothesis claims that both of these are also examples of physical symbol systems: Intelligent human thought: the symbols are encoded in our brains. The expressions are thoughts. The processes are the mental operations of thinking.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Related publications (1)

Simulating both dynamic and kinematic behaviors of mechanical mechanisms

Pearl Pu Faltings

Current theories in the qualitative simulation field tend to draw lines between the dynamic and kinematic behaviors of physical systems. However, cognitive scientists (Metz) believe that humans, including children, seem to have a unified knowledge represen ...
1991
Related concepts (3)
Symbolic artificial intelligence
In artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems (in particular, expert systems), symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems.
Artificial general intelligence
An artificial general intelligence (AGI) is a hypothetical type of intelligent agent. If realized, an AGI could learn to accomplish any intellectual task that human beings or animals can perform. Alternatively, AGI has been defined as an autonomous system that surpasses human capabilities in the majority of economically valuable tasks. Creating AGI is a primary goal of some artificial intelligence research and of companies such as OpenAI, DeepMind, and Anthropic. AGI is a common topic in science fiction and futures studies.
Chinese room
The Chinese room argument holds that a digital computer executing a program cannot have a "mind", "understanding", or "consciousness", regardless of how intelligently or human-like the program may make the computer behave. The argument was presented by philosopher John Searle in his paper "Minds, Brains, and Programs", published in Behavioral and Brain Sciences in 1980. Similar arguments were presented by Gottfried Leibniz (1714), Anatoly Dneprov (1961), Lawrence Davis (1974) and Ned Block (1978).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.