Nova was a high-power laser built at the Lawrence Livermore National Laboratory (LLNL) in California, United States, in 1984 which conducted advanced inertial confinement fusion (ICF) experiments until its dismantling in 1999. Nova was the first ICF experiment built with the intention of reaching "ignition", a chain reaction of nuclear fusion that releases a large amount of energy. Although Nova failed in this goal, the data it generated clearly defined the problem as being mostly a result of Rayleigh–Taylor instability, leading to the design of the National Ignition Facility, Nova's successor. Nova also generated considerable amounts of data on high-density matter physics, regardless of the lack of ignition, which is useful both in fusion power and nuclear weapons research.
ICF mechanism
Inertial confinement fusion (ICF) devices use drivers to rapidly heat the outer layers of a target in order to compress it. The target is a small spherical pellet containing a few milligrams of fusion fuel, typically a mix of deuterium and tritium. The heat of the driving laser burns the surface of the pellet into a plasma, which explodes off the surface. The remaining portion of the target is driven inwards due to Newton's Third Law, eventually collapsing into a small point of very high density.
The rapid blowoff also creates a shock wave that travels towards the center of the compressed fuel. When it reaches the center of the fuel and meets the shock from the other side of the target, the energy in the shock wave further heats and compresses the tiny volume around it. If the temperature and density of that small spot can be raised high enough, fusion reactions in a small portion of the fuel will occur.
The fusion reactions release high-energy particles, some of which (primarily alpha particles) collide with the remaining high-density fuel around it and slow down. This heats the fuel, and can potentially cause that fuel to undergo fusion as well.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the two main approaches to fusion energy, covering conditions for energy generation, compression techniques, physics of Inertial Confinement Fusion, progress in research, and engineering constraints.
In radiation thermodynamics, a hohlraum (a non-specific German word for a "hollow space" or "cavity") is a cavity whose walls are in radiative equilibrium with the radiant energy within the cavity. This idealized cavity can be approximated in practice by making a small perforation in the wall of a hollow container of any opaque material. The radiation escaping through such a perforation will be a good approximation to black-body radiation at the temperature of the interior of the container.
The Laboratory for Laser Energetics (LLE) is a scientific research facility which is part of the University of Rochester's south campus, located in Brighton, New York. The lab was established in 1970 with operations jointly funded by the United States Department of Energy, the University of Rochester and the New York State government. The Laser Lab was commissioned to investigate high-energy physics involving the interaction of extremely intense laser radiation with matter.
The National Ignition Facility (NIF) is a laser-based inertial confinement fusion (ICF) research device, located at Lawrence Livermore National Laboratory in Livermore, California, United States. NIF's mission is to achieve fusion ignition with high energy gain. It achieved the first instance of scientific breakeven controlled fusion in an experiment on December 5, 2022, with an energy gain factor of 1.5. It supports nuclear weapon maintenance and design by studying the behavior of matter under the conditions found within nuclear explosions.
SPIDER is the full scale prototype for the ITER Heating Neutral Beam source, hosted at the Neutral Beam Test Facility in Padova, Italy. The behavior of the beam must be thoroughly investigated to bring the machine's performance in line with ITER's requirem ...
The ITER Heating Neutral Beam (HNB) source prototype SPIDER (Source for the Production of Ions of Deuterium Extracted from a Radio frequency plasma), hosted at the Neutral Beam Test Facility (NBTF) in Padova, Italy, has recently started operating with evap ...
Reduction in stimulated Brillouin scattering (SBS) from National Ignition Facility Hohlraums has been predicted through the use of multi-ion species materials on Hohlraum walls. This approach to controlling SBS is based upon introducing a lighter ion speci ...