Nitrogen trifluoride (NF3) is an inorganic, colorless, non-flammable, toxic gas with a slightly musty odor. It finds increasing use within the manufacturing of flat-panel displays, photovoltaics, LEDs and other microelectronics. Nitrogen trifluoride is also an extremely strong and long-lived greenhouse gas. Its atmospheric burden exceeded 2 parts per trillion during 2019 and has doubled every five years since the late 20th century.
Nitrogen trifluoride did not exist in significant quantities on Earth prior to its synthesis by humans. It is a rare example of a binary fluoride that can be prepared directly from the elements only at very uncommon conditions, such as an electric discharge. After first attempting the synthesis in 1903, Otto Ruff prepared nitrogen trifluoride by the electrolysis of a molten mixture of ammonium fluoride and hydrogen fluoride. It proved to be far less reactive than the other nitrogen trihalides nitrogen trichloride, nitrogen tribromide and nitrogen triiodide, all of which are explosive. Alone among the nitrogen trihalides it has a negative enthalpy of formation. It is prepared in modern times both by direct reaction of ammonia and fluorine and by a variation of Ruff's method. It is supplied in pressurized cylinders.
NF3 is slightly soluble in water without undergoing chemical reaction. It is nonbasic with a low dipole moment of 0.2340 D. By contrast, ammonia is basic and highly polar (1.47 D). This difference arises from the fluorine atoms acting as electron-withdrawing groups, attracting essentially all of the lone pair electrons on the nitrogen atom. NF3 is a potent yet sluggish oxidizer.
It oxidizes hydrogen chloride to chlorine:
2 NF3 + 6 HCl → 6 HF + N2 + 3 Cl2
It is compatible with steel and Monel, as well as several plastics.
It converts to tetrafluorohydrazine upon contact with metals, but only at high temperatures:
2 NF3 + Cu → N2F4 + CuF2
NF3 reacts with fluorine and antimony pentafluoride to give the tetrafluoroammonium salt:
NF3 + F2 + SbF5 → NFSbF
Mixtures of NF3 and B2H6 are explosive even at cryogenic temperatures, reacting to produce nitrogen gas, boron trifluoride, and hydrofluoric acid.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Greenhouse gases are those gases in the atmosphere that raise the surface temperature of planets such as the Earth. What distinguishes them from other gases is that they absorb the wavelengths of radiation that a planet emits, resulting in the greenhouse effect. The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by water vapor (), carbon dioxide (), methane (), nitrous oxide (), and ozone (). Without greenhouse gases, the average temperature of Earth's surface would be about , rather than the present average of .
Hexafluoroethane is the perfluorocarbon counterpart to the hydrocarbon ethane. It is a non-flammable gas negligibly soluble in water and slightly soluble in alcohol. It is an extremely potent and long-lived greenhouse gas. Hexafluoroethane's solid phase has two polymorphs. In the scientific literature, different phase transition temperatures have been stated. The latest works assign it at 103 K (−170 °C). Below 103 K it has a slightly disordered structure, and over the transition point, it has a body centered cubic structure.
Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reactive, as it reacts with all other elements except for the light inert gases. Among the elements, fluorine ranks 24th in universal abundance and 13th in terrestrial abundance.
Streams and rivers emit substantial amounts of nitrous oxide (N2O) and are therefore an essential component of global nitrogen (N) cycle. Permafrost soils store a large reservoir of dormant N that, upon thawing, can enter fluvial networks and partly degrad ...
Ecosystem productivity is strongly modulated by the atmospheric deposition of inorganic reactive nitrogen (the sum of ammonium and nitrate). The individual contributions of ammonium and nitrate vary considerably over space and time, giving rise to complex ...
COPERNICUS GESELLSCHAFT MBH2021
To address the problem of insucient wastewater treatment and eutrophication of lakes and rivers, the symbiotic association of microalgae and bacteria has shown great potential and numerous advantages. First, co-cultures can exhibit ecient treatment of dome ...