Quantum characteristics are phase-space trajectories that arise in the phase space formulation of quantum mechanics through the Wigner transform of Heisenberg operators of canonical coordinates and momenta. These trajectories obey the Hamilton equations in quantum form and play the role of characteristics in terms of which time-dependent Weyl's symbols of quantum operators can be expressed. In the classical limit, quantum characteristics reduce to classical trajectories. The knowledge of quantum characteristics is equivalent to the knowledge of quantum dynamics.
In Hamiltonian dynamics, classical systems with degrees of freedom are described by canonical coordinates and momenta
that form a coordinate system in the phase space. These variables satisfy the Poisson bracket relations
The skew-symmetric matrix ,
where is the identity matrix, defines nondegenerate 2-form in the phase space.
The phase space acquires thereby the structure of a symplectic manifold. The phase space is not metric space, so distance between two points is not defined. The Poisson bracket of two functions can be interpreted as the oriented area of a parallelogram whose adjacent sides are gradients of these functions.
Rotations in Euclidean space leave the distance between two points invariant.
Canonical transformations in symplectic manifold leave the areas invariant.
In quantum mechanics, the canonical variables are associated to operators of canonical coordinates and momenta
These operators act in Hilbert space and obey commutation relations
Weyl’s association rule extends the correspondence to arbitrary phase-space functions and operators.
A one-sided association rule was formulated by Weyl initially with the help of Taylor expansion of functions of operators of the canonical variables
The operators do not commute, so the Taylor expansion is not defined uniquely. The above prescription uses the symmetrized products of the operators. The real functions correspond to the Hermitian operators. The function is called Weyl's symbol of operator .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The phase-space formulation of quantum mechanics places the position and momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position or momentum representations (see also position and momentum space). The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution (instead of a wave function, state vector, or density matrix) and operator multiplication is replaced by a star product.
The Wigner quasiprobability distribution (also called the Wigner function or the Wigner–Ville distribution, after Eugene Wigner and Jean-André Ville) is a quasiprobability distribution. It was introduced by Eugene Wigner in 1932 to study quantum corrections to classical statistical mechanics. The goal was to link the wavefunction that appears in Schrödinger's equation to a probability distribution in phase space. It is a generating function for all spatial autocorrelation functions of a given quantum-mechanical wavefunction ψ(x).
In physics, the Moyal bracket is the suitably normalized antisymmetrization of the phase-space star product. The Moyal bracket was developed in about 1940 by José Enrique Moyal, but Moyal only succeeded in publishing his work in 1949 after a lengthy dispute with Paul Dirac. In the meantime this idea was independently introduced in 1946 by Hip Groenewold. The Moyal bracket is a way of describing the commutator of observables in the phase space formulation of quantum mechanics when these observables are described as functions on phase space.
Molecular spectroscopy is an essential experimental technique in both fundamental physical sciences and applied research. For example, electronic spectroscopy, in which light induces a change in the electronic state of a molecule, is a powerful tool for st ...
We develop structure-preserving reduced basis methods for a large class of nondissipative problems by resorting to their formulation as Hamiltonian dynamical systems. With this perspective, the phase space is naturally endowed with a Poisson manifold struc ...
AMER MATHEMATICAL SOC2021
,
Two different heat-transport mechanisms are discussed in solids. In crystals, heat carriers propagate and scatter particlelike as described by Peierls's formulation of the Boltzmann transport equation for phonon wave packets. In glasses, instead, carriers ...