Concept

L'Arénaire

L'Arénaire (en Ἀρχιμήδης Ψαμμίτης, Archimedes Psammites) est un ouvrage d'Archimède dans lequel il tente de déterminer un majorant du nombre de grains de sable qui pourraient remplir l'univers. Pour ce faire, il est amené à inventer une façon de décrire des nombres extrêmement grands, et à obtenir une estimation de la taille de l'univers. Connu également sous son titre latin de la (de arena signifiant sable), et en anglais sous le titre plus parlant de The Sand Reckoner (le compteur de sable), ce texte est adressé au roi de Syracuse Gélon, vers 230 av. J.-C. ; c'est probablement l'ouvrage le plus accessible d'Archimède. Long d'une dizaine de pages, on peut le voir, en un certain sens, comme la première publication scientifique à être à la fois académique et populaire. Archimède commence par inventer un système pour désigner des grands nombres. Le système de numération en usage à son époque permettait d'exprimer les nombres jusqu'à une myriade (μυριάς — dix-mille) ; en utilisant le mot « myriade » lui-même, ce système peut immédiatement être étendu pour nommer les nombres jusqu'à une myriade de myriades, c'est-à-dire cent millions (). Archimède appela les nombres jusqu'à les « nombres premiers » (ou de la première octade), et appela lui-même « l'unité des nombres seconds ». Les multiples de cette unité sont appelés nombres seconds, et ceux-ci s'étendent jusqu'au produit de cette unité par elle-même (donc une myriade de myriades de fois), soit jusqu'à × = . Ce nombre est appelé « l'unité des nombres troisièmes », dont les multiples seront les nombres troisièmes (ou de la troisième octade), et ainsi de suite. Archimède nomme ainsi les nombres jusqu'à atteindre l'unité de la -ième octade, c'est-à-dire . Bien que ces nombres soient de très loin suffisants pour le dénombrement qu'il s'est proposé, Archimède continue la description de son système comme suit : l'ensemble des nombres qu'il vient de définir est appelé « nombres de la première période », et le plus grand, , sert d'unité pour la « seconde période », laquelle est construite de façon analogue à la première.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.