In optics, photobleaching (sometimes termed fading) is the photochemical alteration of a dye or a fluorophore molecule such that it is permanently unable to fluoresce. This is caused by cleaving of covalent bonds or non-specific reactions between the fluorophore and surrounding molecules. Such irreversible modifications in covalent bonds are caused by transition from a singlet state to the triplet state of the fluorophores. The number of excitation cycles to achieve full bleaching varies. In microscopy, photobleaching may complicate the observation of fluorescent molecules, since they will eventually be destroyed by the light exposure necessary to stimulate them into fluorescing. This is especially problematic in time-lapse microscopy. However, photobleaching may also be used prior to applying the (primarily antibody-linked) fluorescent molecules, in an attempt to quench autofluorescence. This can help improve the signal-to-noise ratio. Photobleaching may also be exploited to study the motion and/or diffusion of molecules, for example via the FRAP, in which movement of cellular components can be confirmed by observing a recovery of fluorescence at the site of photobleaching, or FLIP techniques, in which multiple rounds of photobleaching is done so that the spread of fluorescence loss can be observed in cell. Loss of activity caused by photobleaching can be controlled by reducing the intensity or time-span of light exposure, by increasing the concentration of fluorophores, by reducing the frequency and thus the photon energy of the input light, or by employing more robust fluorophores that are less prone to bleaching (e.g. Cyanine Dyes, Alexa Fluors or DyLight Fluors, AttoDyes, Janelia Dyes and others). To a reasonable approximation, a given molecule will be destroyed after a constant exposure (intensity of emission X emission time X number of cycles) because, in a constant environment, each absorption-emission cycle has an equal probability of causing photobleaching.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
BIO-714: Mechanisms of cell motility
Mechanisms of cell motility
BIO-659: Advanced Microscopy for Life Science
For further information, please get in contact with the instructor or have a look on the following web-site: http://biop.epfl.ch/
CH-448: Photomedicine
The most important clinical diagnostic and therapeutic applications of light will be described. In addition, this course will address the principles governing the interactions between light and biolog
Séances de cours associées (12)
Fluorescence en microscopie: introduction et techniques d'étiquetage
Couvre l'introduction à la fluorescence en microscopie, les techniques de marquage, la spécificité des marqueurs, l'imagerie multicolore et les facteurs affectant les propriétés de fluorescence.
Fluorescence en microscopie: concepts importants
Introduit des concepts fondamentaux de la fluorescence en microscopie, couvrant des termes tels que spectres d'excitation et d'émission, décalage de Stokes, efficacité quantique, luminosité et photoblanchiment.
Microscopie par fluorescence: Techniques d'imagerie
Explore les techniques d'imagerie par microscopie à fluorescence, y compris les principes FRET et les applications en biologie.
Afficher plus
Publications associées (32)

NIR Fluorescence lifetime macroscopic imaging with a time-gated SPAD camera

Edoardo Charbon, Claudio Bruschini, Arin Can Ülkü

The performance of SwissSPAD2 (SS2), a large scale, widefield time-gated CMOS SPAD imager developed for fluorescence lifetime imaging, has recently been described in the context of visible range and fluorescence lifetime imaging microscopy (FLIM) of dyes w ...
SPIE-INT SOC OPTICAL ENGINEERING2022

Temporal resolution doubling in fluorescence light-sheet microscopy via a hue-encoded shutter and regularization

Michael Stefan Daniel Liebling, Christian Jaques

Studying dynamic biological processes, such as heart development and function in zebrafish embryos, often relies on multi-channel fluorescence labeling to distinguish multiple anatomical features, yet also demands high frame rates to capture rapid cell mot ...
2020

Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation

Edoardo Charbon, Claudio Bruschini, Ming-Lo Wu, Kazuhiro Morimoto

Fluorescence lifetime imaging microscopy (FLIM) is a key technology that provides direct insight into cell metabolism, cell dynamics and protein activity. However, determining the lifetimes of different fluorescent proteins requires the detection of a rela ...
NATURE RESEARCH2020
Afficher plus
Concepts associés (1)
Microscopie à fluorescence
La microscopie en fluorescence (ou en épifluorescence) est une technique utilisant un microscope optique en tirant profit du phénomène de fluorescence et de phosphorescence, au lieu de, ou en plus de l'observation classique par réflexion ou absorption de la lumière visible naturelle ou artificielle. On peut ainsi observer divers objets, substances (organiques ou inorganiques) ou échantillons d'organismes morts ou vivants. Elle fait désormais partie des méthodes de recherche classiques et de la biologie et continue à se développer avec l'.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.