In materials science, the Charpy impact test, also known as the Charpy V-notch test, is a standardized high strain rate test which determines the amount of energy absorbed by a material during fracture. Absorbed energy is a measure of the material's notch toughness. It is widely used in industry, since it is easy to prepare and conduct and results can be obtained quickly and cheaply. A disadvantage is that some results are only comparative. The test was pivotal in understanding the fracture problems of ships during World War II.
The test was developed around 1900 by S. B. Russell (1898, American) and Georges Charpy (1901, French). The test became known as the Charpy test in the early 1900s due to the technical contributions and standardization efforts by Charpy.
In 1896, S. B. Russell introduced the idea of residual fracture energy and devised a pendulum fracture test. Russell's initial tests measured un-notched samples. In 1897, Frémont introduced a test to measure the same phenomenon using a spring-loaded machine. In 1901, Georges Charpy proposed a standardized method improving Russell's by introducing a redesigned pendulum and notched sample, giving precise specifications.
The apparatus consists of a pendulum of known mass and length that is dropped from a known height to impact a notched specimen of material. The energy transferred to the material can be inferred by comparing the difference in the height of the hammer before and after the fracture (energy absorbed by the fracture event).
The notch in the sample affects the results of the impact test, thus it is necessary for the notch to be of regular dimensions and geometry. The size of the sample can also affect results, since the dimensions determine whether or not the material is in plane strain. This difference can greatly affect the conclusions made.
The Standard methods for Notched Bar Impact Testing of Metallic Materials can be found in ASTM E23, ISO 148-1 or EN 10045-1 (retired and replaced with ISO 148-1), where all the aspects of the test and equipment used are described in detail.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours constitue une introduction aux principes qui régissent l'élaboration, la microstructure et les propriétés des matériaux métalliques. Trois systèmes principaux d'alliages (Al, Cu, Fe) seront u
This course offers fundamentals concepts of material behavior under dynamic loads such as impact and shock. lt will cover experimental methods and analytical modeling approaches to describe the dynami
In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property.
A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Breaking is often accompanied by a sharp snapping sound. When used in materials science, it is generally applied to materials that fail when there is little or no plastic deformation before failure. One proof is to match the broken halves, which should fit exactly since no plastic deformation has occurred.
Fracture is the separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band or dislocation. Brittle fractures occur without any apparent deformation before fracture.
WC-Co cemented carbides are composites, which combine a hard phase consisting of WC grains and a metallic ductile phase as a binder. Their excellent mechanical properties, combining high hardness, toughness and refractory properties, make them excellent ma ...
Tensile and creep rupture properties of crack-free CM247LC alloy, processed via laser powder bed fusion, have been characterised in this work at temperatures up to 1000 & DEG;C. The subject alloy matches or even exceeds the tensile performance of its direc ...
ELSEVIER2023
, , ,
The majority of the seismic events in the Mediterranean region are hosted in carbonate-bearing rocks at depths representative of the semi-brittle regime. Within this regime, a complex interplay between brittle (localized) and ductile (distributed) deformat ...