Summary
Cation-exchange capacity (CEC) is a measure of how many cations can be retained on soil particle surfaces. Negative charges on the surfaces of soil particles bind positively-charged atoms or molecules (cations), but allow these to exchange with other positively charged particles in the surrounding soil water. This is one of the ways that solid materials in soil alter the chemistry of the soil. CEC affects many aspects of soil chemistry, and is used as a measure of soil fertility, as it indicates the capacity of the soil to retain several nutrients (e.g. K+, NH4+, Ca2+) in plant-available form. It also indicates the capacity to retain pollutant cations (e.g. Pb2+). Cation-exchange capacity is defined as the amount of positive charge that can be exchanged per mass of soil, usually measured in cmolc/kg. Some texts use the older, equivalent units me/100g or meq/100g. CEC is measured in moles of electric charge, so a cation-exchange capacity of 10 cmolc/kg could hold 10 cmol of Na+ cations (with 1 unit of charge per cation) per kilogram of soil, but only 5 cmol Ca2+ (2 units of charge per cation). Cation-exchange capacity arises from various negative charges on soil particle surfaces, especially those of clay minerals and soil organic matter. Phyllosilicate clays consist of layered sheets of aluminium and silicon oxides. The replacement of aluminium or silicon atoms by other elements with lower charge (e.g. Al3+ replaced by Mg2+) can give the clay structure a net negative charge. This charge does not involve deprotonation and is therefore pH-independent, and called permanent charge. In addition, the edges of these sheets expose many acidic hydroxyl groups that are deprotonated to leave negative charges at the pH levels in many soils. Organic matter also makes a very significant contribution to cation exchange, due to its large number of charged functional groups. CEC is typically higher near the soil surface, where organic matter content is highest, and declines with depth. The CEC of organic matter is highly pH-dependent.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.