Summary
In thermodynamics, superheating (sometimes referred to as boiling retardation, or boiling delay) is the phenomenon in which a liquid is heated to a temperature higher than its boiling point, without boiling. This is a so-called metastable state or metastate, where boiling might occur at any time, induced by external or internal effects. Superheating is achieved by heating a homogeneous substance in a clean container, free of nucleation sites, while taking care not to disturb the liquid. This may occur by microwaving water in a very smooth container. Disturbing the water may cause an unsafe eruption of hot water and result in burns. Water is said to "boil" when bubbles of water vapor grow without bound, bursting at the surface. For a vapor bubble to expand, the temperature must be high enough that the vapor pressure exceeds the ambient pressure (the atmospheric pressure, primarily). Below that temperature, a water vapor bubble will shrink and vanish. Superheating is an exception to this simple rule; a liquid is sometimes observed not to boil even though its vapor pressure does exceed the ambient pressure. The cause is an additional force, the surface tension, which suppresses the growth of bubbles. Surface tension makes the bubble act like an elastic balloon. The pressure inside is raised slightly by the "skin" attempting to contract. For the bubble to expand, the temperature must be raised slightly above the boiling point to generate enough vapor pressure to overcome both surface tension and ambient pressure. What makes superheating so explosive is that a larger bubble is easier to inflate than a small one; just as when blowing up a balloon, the hardest part is getting started. It turns out the excess pressure due to surface tension is inversely proportional to the diameter of the bubble. That is, . This can be derived by imagining a plane cutting a bubble into two halves. Each half is pulled towards the middle with a surface tension force , which must be balanced by the force from excess pressure .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.