Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Heap leaching is an industrial mining process used to extract precious metals, copper, uranium, and other compounds from ore using a series of chemical reactions that absorb specific minerals and re-separate them after their division from other earth materials. Similar to in situ mining, heap leach mining differs in that it places ore on a liner, then adds the chemicals via drip systems to the ore, whereas in situ mining lacks these liners and pulls pregnant solution up to obtain the minerals. Heap leaching is widely used in modern large-scale mining operations as it produces the desired concentrates at a lower cost compared to conventional processing methods such as flotation, agitation, and vat leaching. Additionally, dump leaching is an essential part of most copper mining operations and determines the quality grade of the produced material along with other factors Due to the profitability that the dump leaching has on the mining process, i.e. it can contribute substantially to the economic viability of the mining process, it is advantageous to include the results of the leaching operation in the economic overall project evaluation. The process has ancient origins; one of the classical methods for the manufacture of copperas (iron sulfate) was to heap up iron pyrite and collect the leachate from the heap, which was then boiled with iron to produce iron(II) sulfate. The mined ore is usually crushed into small chunks and heaped on an impermeable plastic or clay lined leach pad where it can be irrigated with a leach solution to dissolve the valuable metals. While sprinklers are occasionally used for irrigation, more often operations use drip irrigation to minimize evaporation, provide more uniform distribution of the leach solution, and avoid damaging the exposed mineral. The solution then percolates through the heap and leaches both the target and other minerals. This process, called the "leach cycle," generally takes from one or two months for simple oxide ores (e.g. most gold ores) to two years for nickel laterite ores.
Lyesse Laloui, Eleni Stavropoulou, Cesare Griner
Rizlan Bernier-Latmani, Pierre Rossi, Thomas Coral
Wendy Lee Queen, Jordi Espin Marti, Till Marian Schertenleib, Olga Trukhina, Claudia Esther Avalos, Vikram Vinayak Karve, Xiyuan Zhang