Concept

Safety engineering

Summary
Safety engineering is an engineering discipline which assures that engineered systems provide acceptable levels of safety. It is strongly related to industrial engineering/systems engineering, and the subset system safety engineering. Safety engineering assures that a life-critical system behaves as needed, even when components fail. Analysis techniques can be split into two categories: qualitative and quantitative methods. Both approaches share the goal of finding causal dependencies between a hazard on system level and failures of individual components. Qualitative approaches focus on the question "What must go wrong, such that a system hazard may occur?", while quantitative methods aim at providing estimations about probabilities, rates and/or severity of consequences. The complexity of the technical systems such as Improvements of Design and Materials, Planned Inspections, Fool-proof design, and Backup Redundancy decreases risk and increases the cost. The risk can be decreased to ALARA (as low as reasonably achievable) or ALAPA (as low as practically achievable) levels. Traditionally, safety analysis techniques rely solely on skill and expertise of the safety engineer. In the last decade model-based approaches, like STPA (Systems Theoretic Process Analysis), have become prominent. In contrast to traditional methods, model-based techniques try to derive relationships between causes and consequences from some sort of model of the system. The two most common fault modeling techniques are called failure mode and effects analysis (FMEA) and fault tree analysis (FTA). These techniques are just ways of finding problems and of making plans to cope with failures, as in probabilistic risk assessment. One of the earliest complete studies using this technique on a commercial nuclear plant was the WASH-1400 study, also known as the Reactor Safety Study or the Rasmussen Report. Failure mode and effects analysis Failure Mode and Effects Analysis (FMEA) is a bottom-up, inductive analytical method which may be performed at either the functional or piece-part level.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.