Concept

Signal processing

Summary
Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing signals, such as sound, , potential fields, seismic signals, altimetry processing, and scientific measurements. Signal processing techniques are used to optimize transmissions, digital storage efficiency, correcting distorted signals, subjective video quality and to also detect or pinpoint components of interest in a measured signal. According to Alan V. Oppenheim and Ronald W. Schafer, the principles of signal processing can be found in the classical numerical analysis techniques of the 17th century. They further state that the digital refinement of these techniques can be found in the digital control systems of the 1940s and 1950s. In 1948, Claude Shannon wrote the influential paper "A Mathematical Theory of Communication" which was published in the Bell System Technical Journal. The paper laid the groundwork for later development of information communication systems and the processing of signals for transmission. Signal processing matured and flourished in the 1960s and 1970s, and digital signal processing became widely used with specialized digital signal processor chips in the 1980s. A signal is a function , where this function is either deterministic (then one speaks of a deterministic signal) or a path , a realization of a stochastic process Analog signal processing Analog signal processing is for signals that have not been digitized, as in most 20th-century radio, telephone, and television systems. This involves linear electronic circuits as well as nonlinear ones. The former are, for instance, passive filters, active filters, additive mixers, integrators, and delay lines. Nonlinear circuits include compandors, multipliers (frequency mixers, voltage-controlled amplifiers), voltage-controlled filters, voltage-controlled oscillators, and phase-locked loops. Continuous-time signal processing is for signals that vary with the change of continuous domain (without considering some individual interrupted points).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.