Photosynthesis systems are electronic scientific instruments designed for non-destructive measurement of photosynthetic rates in the field. Photosynthesis systems are commonly used in agronomic and environmental research, as well as studies of the global carbon cycle.
Photosynthesis systems function by measuring gas exchange of leaves. Atmospheric carbon dioxide is taken up by leaves in the process of photosynthesis, where is used to generate sugars in a molecular pathway known as the Calvin cycle. This draw-down of induces more atmospheric to diffuse through stomata into the air spaces of the leaf. While stoma are open, water vapor can easily diffuse out of plant tissues, a process known as transpiration. It is this exchange of and water vapor that is measured as a proxy of photosynthetic rate.
The basic components of a photosynthetic system are the leaf chamber, infrared gas analyzer (IRGA), batteries and a console with keyboard, display and memory. Modern 'open system' photosynthesis systems also incorporate miniature disposable compressed gas cylinder and gas supply pipes. This is because external air has natural fluctuations in and water vapor content, which can introduce measurement noise. Modern 'open system' photosynthesis systems remove the and water vapour by passage over soda lime and Drierite, then add at a controlled rate to give a stable concentration. Some systems are also equipped with temperature control and a removable light unit, so the effect of these environmental variables can also be measured.
The leaf to be analysed is placed in the leaf chamber. The concentrations is measured by the infrared gas analyzer. The IRGA shines infrared light through a gas sample onto a detector. in the sample absorbs energy, so the reduction in the level of energy that reaches the detector indicates the concentration. Modern IRGAs take account of the fact that absorbs energy at similar wavelengths as .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Provides an overview of photosynthesis, including its evolution and the characteristics of different phototrophs.
, , , , ,
center dot Mixing species with contrasting resource use strategies could reduce forest vulnerability to extreme events. Yet, how species diversity affects seedling hydraulic responses to heat and drought, including mortality risk, is largely unknown. Using ...
Hoboken2023
The worsening of drought events with rising air temperature alters tree water relations causing severe hydraulic impairments and widespread forest mortality. Mixing tree species with contrasting hydraulic traits could reduce forest vulnerability to extreme ...
EPFL2024
, ,
Progressively warmer and drier climatic conditions impact tree phenology and carbon cycling with large consequences for forest carbon balance. However, it remains unclear how individual impacts of warming and drier soils differ from their combined effects ...