The nanocar is a molecule designed in 2005 at Rice University by a group headed by Professor James Tour. Despite the name, the original nanocar does not contain a molecular motor, hence, it is not really a car. Rather, it was designed to answer the question of how fullerenes move about on metal surfaces; specifically, whether they roll or slide (they roll).
The molecule consists of an H-shaped 'chassis' with fullerene groups attached at the four corners to act as wheels.
When dispersed on a gold surface, the molecules attach themselves to the surface via their fullerene groups and are detected via scanning tunneling microscopy. One can deduce their orientation as the frame length is a little shorter than its width.
Upon heating the surface to 200 °C the molecules move forward and back as they roll on their fullerene "wheels". The nanocar is able to roll about because the fullerene wheel is fitted to the alkyne "axle" through a carbon-carbon single bond. The hydrogen on the neighboring carbon is no great obstacle to free rotation. When the temperature is high enough, the four carbon-carbon bonds rotate and the car rolls about. Occasionally the direction of movement changes as the molecule pivots. The rolling action was confirmed by Professor Kevin Kelly, also at Rice, by pulling the molecule with the tip of the STM.
The concept of a nanocar built out of molecular "tinkertoys" was first hypothesized by M.T. Michalewicz at the Fifth Foresight Conference on Molecular Nanotechnology (November 1997). Subsequently, an expanded version was published in Annals of Improbable Research. These papers were supposed to be a not-so-serious contribution to a fundamental debate on the limits of bottom-up Drexlerian nanotechnology and conceptual limits of how far mechanistic analogies advanced by Eric Drexler could be carried out. The important feature of this nanocar concept was the fact that all molecular component tinkertoys were known and synthesized molecules (alas, some very exotic and only recently discovered, e.g.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Molecular motors are natural (biological) or artificial molecular machines that are the essential agents of movement in living organisms. In general terms, a motor is a device that consumes energy in one form and converts it into motion or mechanical work; for example, many protein-based molecular motors harness the chemical free energy released by the hydrolysis of ATP in order to perform mechanical work. In terms of energetic efficiency, this type of motor can be superior to currently available man-made motors.
Nanotechnology, often shortened to nanotech, is the use of matter on atomic, molecular, and supramolecular scales for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defined nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm).
Molecular machines offer many opportunities for the development of responsive materials and introduce autono-mous motion in molecular systems. While basic molecular switches and motors carry out one type of motion upon being exposed to an external stimulus ...
AMER CHEMICAL SOC2023
, ,
Being able to understand how optical forces emerge from the interaction of light with matter is paramount for controlling the motion of nanoparticles as well as powering nanomotors. The purpose of this work is to uncover the physical mechanisms at the orig ...
Optical manipulation at the micro- nano-scale is a fascinating topic due to its inherent non-invasive properties and multifaceted applications in various fields such as biology, sensing, micro-fluidics, and micro- nano-robotics. This thesis involves intens ...