Summary
A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or aspect ratio. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared to a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST. The spherical tokamak is an offshoot of the conventional tokamak design. Proponents claim that it has a number of substantial practical advantages over these devices. For this reason the ST has generated considerable interest since the late 1980s. However, development remains effectively one generation behind traditional tokamak efforts like JET. Major experiments in the ST field include the pioneering START and MAST at Culham in the UK, the US's NSTX-U and Russian Globus-M. Research has investigated whether spherical tokamaks are a route to lower cost reactors. Further research is needed to better understand how such devices scale. Even in the event that STs do not lead to lower cost approaches to power generation, they are still lower cost in general; this makes them attractive devices for studying plasma physics, or as high-energy neutron sources. The basic idea behind fusion is to force two suitable atoms close enough together that the strong force pulls them together to make a single larger atom. This process releases a considerable amount of binding energy, typically in the form of high-speed subatomic particles like neutrons or beta particles. However, these same fuel atoms also experience the electromagnetic force pushing them apart. In order for them to fuse, they must be pressed together with enough energy to overcome this coulomb barrier. The simplest way to do this is to heat the fuel to very high temperatures, and allow the Maxwell–Boltzmann distribution to produce a number of very high-energy atoms within a larger, cooler mix.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood