Summary
Tidal acceleration is an effect of the tidal forces between an orbiting natural satellite (e.g. the Moon) and the primary planet that it orbits (e.g. Earth). The acceleration causes a gradual recession of a satellite in a prograde orbit away from the primary, and a corresponding slowdown of the primary's rotation. The process eventually leads to tidal locking, usually of the smaller body first, and later the larger body (e.g. theoretically with Earth in 50 billion years). The Earth–Moon system is the best-studied case. The similar process of tidal deceleration occurs for satellites that have an orbital period that is shorter than the primary's rotational period, or that orbit in a retrograde direction. The naming is somewhat confusing, because the average speed of the satellite relative to the body it orbits is decreased as a result of tidal acceleration, and increased as a result of tidal deceleration. This conundrum occurs because a positive acceleration at one instant causes the satellite to loop farther outward during the next half orbit, decreasing its average speed. A continuing positive acceleration causes the satellite to spiral outward with a decreasing speed and angular rate, resulting in a negative acceleration of angle. A continuing negative acceleration has the opposite effect. Edmond Halley was the first to suggest, in 1695, that the mean motion of the Moon was apparently getting faster, by comparison with ancient eclipse observations, but he gave no data. (It was not yet known in Halley's time that what is actually occurring includes a slowing-down of Earth's rate of rotation: see also Ephemeris time – History. When measured as a function of mean solar time rather than uniform time, the effect appears as a positive acceleration.) In 1749 Richard Dunthorne confirmed Halley's suspicion after re-examining ancient records, and produced the first quantitative estimate for the size of this apparent effect: a centurial rate of +10′′ (arcseconds) in lunar longitude, which is a surprisingly accurate result for its time, not differing greatly from values assessed later, e.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (44)