Concept

Stem-cell line

A stem cell line is a group of stem cells that is cultured in vitro and can be propagated indefinitely. Stem cell lines are derived from either animal or human tissues and come from one of three sources: embryonic stem cells, adult stem cells, or induced stem cells. They are commonly used in research and regenerative medicine. Stem cell By definition, stem cells possess two properties: (1) they can self-renew, which means that they can divide indefinitely while remaining in an undifferentiated state; and (2) they are pluripotent or multipotent, which means that they can differentiate to form specialized cell types. Due to the self-renewal capacity of stem cells, a stem cell line can be cultured in vitro indefinitely. A stem-cell line is distinctly different from an immortalized cell line, such as the HeLa line. While stem cells can propagate indefinitely in culture due to their inherent properties, immortalized cells would not normally divide indefinitely but have gained this ability due to mutation. Immortalized cell lines can be generated from cells isolated from tumors, or mutations can be introduced to make the cells immortal. A stem cell line is also distinct from primary cells. Primary cells are cells that have been isolated and then used immediately. Primary cells cannot divide indefinitely and thus cannot be cultured for long periods of time in vitro. Embryonic stem cell An embryonic stem cell line is created from cells derived from the inner cell mass of a blastocyst, an early stage, pre-implantation embryo. In humans, the blastocyst stage occurs 4–5 days post fertilization. To create an embryonic stem cell line, the inner cell-mass is removed from the blastocyst, separated from the trophoectoderm, and cultured on a layer of supportive cells in vitro. In the derivation of human embryonic stem cell lines, embryos left over from in vitro fertilization (IVF) procedures are used. The fact that the blastocyst is destroyed during the process has raised controversy and ethical concerns.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (23)
BIO-447: Stem cells and organoids
This course introduces the fundamentals of stem cell biology, with a particular focus on the role of stem cells during development, tissue homeostasis/regeneration and disease, and the generation of o
BIO-679: Practical - Suter Lab
Bioluminescence imaging and data analysis Splinkerette PCR (to analyze genomic insertion site of a transgene). The students will obtain theoretical and practical insight into embryonic stem cell biol
BIO-310: Immunology
Ce cours décrit le fonctionnement du système immunitaire humain et les bases immunologiques de la vaccination, de la transplantation, de l'immunothérapie, et de l'allergie. Il présente aussi le rôle d
Show more
Related lectures (47)
Ethical Research with Biological Material
Explores ethical research with biological material, emphasizing vulnerable populations and the balance between risks and benefits.
Tissue Engineering: Biomaterials and Stem Cells
Explores the requirements of materials for tissue engineering, focusing on stem cells and biomaterials' role in controlling stem-cell fate and tissue regeneration.
Stem Cell Phenotypes and Lineage Analysis
Discusses LGR5 phenotypes in mice and lineage analysis techniques.
Show more
Related publications (571)
Related concepts (2)
Induced pluripotent stem cell
Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka and Kazutoshi Takahashi in Kyoto, Japan, who together showed in 2006 that the introduction of four specific genes (named Myc, Oct3/4, Sox2 and Klf4), collectively known as Yamanaka factors, encoding transcription factors could convert somatic cells into pluripotent stem cells.
Embryonic stem cell
Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre-implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist of 50–150 cells. Isolating the inner cell mass (embryoblast) using immunosurgery results in destruction of the blastocyst, a process which raises ethical issues, including whether or not embryos at the pre-implantation stage have the same moral considerations as embryos in the post-implantation stage of development.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.