In algebraic geometry, a Fano variety, introduced by Gino Fano in , is a complete variety X whose anticanonical bundle KX* is ample. In this definition, one could assume that X is smooth over a field, but the minimal model program has also led to the study of Fano varieties with various types of singularities, such as terminal or klt singularities. Recently techniques in differential geometry have been applied to the study of Fano varieties over the complex numbers, and success has been found in constructing moduli spaces of Fano varieties and proving the existence of Kähler–Einstein metrics on them through the study of K-stability of Fano varieties.
The fundamental example of Fano varieties are the projective spaces: the anticanonical line bundle of Pn over a field k is O(n+1), which is very ample (over the complex numbers, its curvature is n+1 times the Fubini–Study symplectic form).
Let D be a smooth codimension-1 subvariety in Pn. The adjunction formula implies that KD = (KX + D)|D = (−(n+1)H + deg(D)H)|D, where H is the class of a hyperplane. The hypersurface D is therefore Fano if and only if deg(D) < n+1.
More generally, a smooth complete intersection of hypersurfaces in n-dimensional projective space is Fano if and only if the sum of their degrees is at most n.
Weighted projective space P(a0,...,an) is a singular (klt) Fano variety. This is the projective scheme associated to a graded polynomial ring whose generators have degrees a0,...,an. If this is well formed, in the sense that no n of the numbers a have a common factor greater than 1, then any complete intersection of hypersurfaces such that the sum of their degrees is less than a0+...+an is a Fano variety.
Every projective variety in characteristic zero that is homogeneous under a linear algebraic group is Fano.
The existence of some ample line bundle on X is equivalent to X being a projective variety, so a Fano variety is always projective. For a Fano variety X over the complex numbers, the Kodaira vanishing theorem implies that the sheaf cohomology groups of the structure sheaf vanish for .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In algebraic geometry, the minimal model program is part of the birational classification of algebraic varieties. Its goal is to construct a birational model of any complex projective variety which is as simple as possible. The subject has its origins in the classical birational geometry of surfaces studied by the Italian school, and is currently an active research area within algebraic geometry. The basic idea of the theory is to simplify the birational classification of varieties by finding, in each birational equivalence class, a variety which is "as simple as possible".
In mathematics, a rational variety is an algebraic variety, over a given field K, which is birationally equivalent to a projective space of some dimension over K. This means that its function field is isomorphic to the field of all rational functions for some set of indeterminates, where d is the dimension of the variety. Let V be an affine algebraic variety of dimension d defined by a prime ideal I = ⟨f1, ..., fk⟩ in . If V is rational, then there are n + 1 polynomials g0, ..., gn in such that In order words, we have a of the variety.
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles. A rational map from one variety (understood to be irreducible) to another variety , written as a dashed arrow X Y, is defined as a morphism from a nonempty open subset to .
Covers regular and smooth projective varieties, hypersurfaces, and algebraic dimensions.
, ,
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
We show that mixed-characteristic and equicharacteristic small deformations of 3-dimensional canonical (resp., terminal) singularities with perfect residue field of characteristic p>5 are canonical (resp., terminal). We discuss applications to arithmetic a ...
Hoboken2023
Let G be a finite subgroup of SU(4) such that its elements have age at most one. In the first part of this paper, we define K-theoretic stable pair invariants on a crepant resolution of the affine quotient C4/G, and conjecture a closed formula for their ge ...