Concept

1,3-Bisphosphoglyceric acid

Summary
1,3-Bisphosphoglyceric acid (1,3-Bisphosphoglycerate or 1,3BPG) is a 3-carbon organic molecule present in most, if not all, living organisms. It primarily exists as a metabolic intermediate in both glycolysis during respiration and the Calvin cycle during photosynthesis. 1,3BPG is a transitional stage between glycerate 3-phosphate and glyceraldehyde 3-phosphate during the fixation/reduction of CO2. 1,3BPG is also a precursor to 2,3-bisphosphoglycerate which in turn is a reaction intermediate in the glycolytic pathway. 1,3-Bisphosphoglycerate is the conjugate base of 1,3-bisphosphoglyceric acid. It is phosphorylated at the number 1 and 3 carbons. The result of this phosphorylation gives 1,3BPG important biological properties such as the ability to phosphorylate ADP to form the energy storage molecule ATP. As previously mentioned 1,3BPG is a metabolic intermediate in the glycolytic pathway. It is created by the exergonic oxidation of the aldehyde in G3P. The result of this oxidation is the conversion of the aldehyde group into a carboxylic acid group which drives the formation of an acyl phosphate bond. This is incidentally the only step in the glycolytic pathway in which NAD+ is converted into NADH. The formation reaction of 1,3BPG requires the presence of an enzyme called glyceraldehyde-3-phosphate dehydrogenase. The high-energy acyl phosphate bond of 1,3BPG is important in respiration as it assists in the formation of ATP. The molecule of ATP created during the following reaction is the first molecule produced during respiration. The reaction occurs as follows; 1,3-bisphosphoglycerate + ADP ⇌ 3-phosphoglycerate + ATP The transfer of an inorganic phosphate from the carboxyl group on 1,3BPG to ADP to form ATP is reversible due to a low ΔG. This is as a result of one acyl phosphate bond being cleaved whilst another is created. This reaction is not naturally spontaneous and requires the presence of a catalyst. This role is performed by the enzyme phosphoglycerate kinase.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
ENV-202: Microbiology for engineers
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
ChE-411: Principles and applications of systems biology
The course introduces and develops the key concepts from systems biology and systems engineering in the context of complex biological networks. The lectures elaborate on techniques and methods to mode
BIO-212: Biological chemistry I
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
Show more