Concept

Korotkoff sounds

Korotkoff sounds are the sounds that medical personnel listen for when they are taking blood pressure using a non-invasive procedure. They are named after Nikolai Korotkov, a Russian physician who discovered them in 1905, when he was working at the Imperial Medical Academy in St. Petersburg, the Russian Empire. The sounds heard during the measurement of blood pressure are not the same as the heart sounds heard during chest auscultation that are due to vibrations inside the ventricles associated with the snapping shut of the valves. If a stethoscope is placed over the brachial artery in the antecubital fossa in a normal person (without arterial disease), no sound should be audible. As the heart beats, these pulses are transmitted smoothly via laminar (non-turbulent) blood flow throughout the arteries, and no sound is produced. Similarly, if the cuff of a sphygmomanometer is placed around a patient's upper arm and inflated to a pressure above the patient's systolic blood pressure, there will be no sound audible. This is because the pressure in the cuff is high enough such that it completely occludes the blood flow. This is similar to a flexible tube or pipe with fluid in it that is being pinched shut. If the pressure is dropped to a level equal to that of the patient's systolic blood pressure, the first Korotkoff sound will be heard. As the pressure in the cuff is the same as the pressure produced by the heart, some blood will be able to pass through the upper arm when the pressure in the artery rises during systole. This blood flows in spurts as the pressure in the artery rises above the pressure in the cuff and then drops back down beyond the cuffed region, resulting in turbulence that produces an audible sound. As the pressure in the cuff is allowed to fall further, thumping sounds continue to be heard as long as the pressure in the cuff is between the systolic and diastolic pressures, as the arterial pressure keeps on rising above and dropping back below the pressure in the cuff.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Indirect Arterial Pressure Measurement
Explores indirect arterial pressure measurement methods using sensors, including Korotkoff and oscillometry, as well as tonometry and intraocular pressure measurement techniques.
Show more
Related publications (17)

Validation of a Non-invasive Inverse Problem-Solving Method for Stroke Volume

Nikolaos Stergiopoulos, Georgios Rovas, Vasiliki Bikia, Stamatia Zoi Pagoulatou, Emma Marie Roussel

Stroke volume (SV) is a major biomarker of cardiac function, reflecting ventricular-vascular coupling. Despite this, hemodynamic monitoring and management seldomly includes assessments of SV and remains predominantly guided by brachial cuff blood pressure ...
FRONTIERS MEDIA SA2022

In vivo application and validation of a novel noninvasive method to estimate the end-systolic elastance

Nikolaos Stergiopoulos, Georgios Rovas, Vasiliki Bikia, Stamatia Zoi Pagoulatou

Accurate assessment of the left ventricular (LV) systolic function is indispensable in the clinic. However, estimation of a precise index of cardiac contractility, i.e., the end-systolic elastance (E-es), is invasive and cannot be established as clinical r ...
2021

Numerical approximation of cardiac electro-fluid-mechanical models

Antonello Gerbi

The mathematical modeling of the heart involves several challenges, which are intrinsically related to the complexity of its function. A satisfactory cardiac model must be able to describe a wide range of different processes, such as the evolution of the t ...
EPFL2018
Show more
Related concepts (1)
Sphygmomanometer
A sphygmomanometer (ˌsfɪɡməʊməˈnɒmɪtər ), a blood pressure monitor, or blood pressure gauge, is a device used to measure blood pressure, composed of an inflatable cuff to collapse and then release the artery under the cuff in a controlled manner, and a mercury or aneroid manometer to measure the pressure. Manual sphygmomanometers are used with a stethoscope when using the auscultatory technique. A sphygmomanometer consists of an inflatable cuff, a measuring unit (the mercury manometer, or aneroid gauge), and a mechanism for inflation which may be a manually operated bulb and valve or a pump operated electrically.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.