Concept

Disk mirroring

Summary
In data storage, disk mirroring is the replication of logical disk volumes onto separate physical hard disks in real time to ensure continuous availability. It is most commonly used in RAID 1. A mirrored volume is a complete logical representation of separate volume copies. In a disaster recovery context, mirroring data over long distance is referred to as storage replication. Depending on the technologies used, replication can be performed synchronously, asynchronously, semi-synchronously, or point-in-time. Replication is enabled via microcode on the disk array controller or via server software. It is typically a proprietary solution, not compatible between various data storage device vendors. Mirroring is typically only synchronous. Synchronous writing typically achieves a recovery point objective (RPO) of zero lost data. Asynchronous replication can achieve an RPO of just a few seconds while the remaining methodologies provide an RPO of a few minutes to perhaps several hours. Disk mirroring differs from that operates on the file level, and disk snapshots where data images are never re-synced with their origins. Typically, mirroring is provided in either hardware solutions such as disk arrays, or in software within the operating system (such as Linux mdadm and device mapper). Additionally, s like Btrfs or ZFS provide integrated data mirroring. There are additional benefits from Btrfs and ZFS, which maintain both data and metadata integrity checksums, making themselves capable of detecting bad copies of blocks, and using mirrored data to pull up data from correct blocks. There are several scenarios for what happens when a disk fails. In a hot swap system, in the event of a disk failure, the system itself typically diagnoses a disk failure and signals a failure. Sophisticated systems may automatically activate a hot standby disk and use the remaining active disk to copy live data onto this disk. Alternatively, a new disk is installed and the data is copied to it.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.