Concept

5-simplex honeycomb

Summary
In five-dimensional Euclidean geometry, the 5-simplex honeycomb or hexateric honeycomb is a space-filling tessellation (or honeycomb or pentacomb). Each vertex is shared by 12 5-simplexes, 30 rectified 5-simplexes, and 20 birectified 5-simplexes. These facet types occur in proportions of 2:2:1 respectively in the whole honeycomb. This vertex arrangement is called the A5 lattice or 5-simplex lattice. The 30 vertices of the stericated 5-simplex vertex figure represent the 30 roots of the Coxeter group. It is the 5-dimensional case of a simplectic honeycomb. The A_2 lattice is the union of two A5 lattices: ∪ The A_3 is the union of three A5 lattices: ∪ ∪ . The A_* lattice (also called A_6) is the union of six A5 lattices, and is the dual vertex arrangement to the omnitruncated 5-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 5-simplex.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.