In logic, especially as applied in mathematics, concept A is a special case or specialization of concept B precisely if every instance of A is also an instance of B but not vice versa, or equivalently, if B is a generalization of A. A limiting case is a type of special case which is arrived at by taking some aspect of the concept to the extreme of what is permitted in the general case. A degenerate case is a special case which is in some way qualitatively different from almost all of the cases allowed.
Special case examples include the following:
All squares are rectangles (but not all rectangles are squares); therefore the square is a special case of the rectangle.
Fermat's Last Theorem, that an + bn = cn has no solutions in positive integers with n > 2, is a special case of Beal's conjecture, that ax + by = cz has no primitive solutions in positive integers with x, y, and z all greater than 2, specifically, the case of x = y = z.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation
Covers the analysis of numerical methods for solving ordinary differential equations with a focus on stability.
Explores applications of the residues theorem in various scenarios, with a focus on Laurent series development.
Covers the stability analysis of ODEs using numerical methods and discusses stability conditions.