Summary
Grain size (or particle size) is the diameter of individual grains of sediment, or the lithified particles in clastic rocks. The term may also be applied to other granular materials. This is different from the crystallite size, which refers to the size of a single crystal inside a particle or grain. A single grain can be composed of several crystals. Granular material can range from very small colloidal particles, through clay, silt, sand, gravel, and cobbles, to boulders. Size ranges define limits of classes that are given names in the Wentworth scale (or Udden–Wentworth scale) used in the United States. The Krumbein phi (φ) scale, a modification of the Wentworth scale created by W. C. Krumbein in 1934, is a logarithmic scale computed by the equation where is the Krumbein phi scale, is the diameter of the particle or grain in millimeters (Krumbein and Monk's equation) and is a reference diameter, equal to 1 mm (to make the equation dimensionally consistent). This equation can be rearranged to find diameter using φ: In some schemes, gravel is anything larger than sand (comprising granule, pebble, cobble, and boulder in the table above). ISO 14688-1:2017, establishes the basic principles for the identification and classification of soils on the basis of those material and mass characteristics most commonly used for soils for engineering purposes. ISO 14688-1 is applicable to natural soils in situ, similar man-made materials in situ and soils redeposited by people. An accumulation of sediment can also be characterized by the grain size distribution. A sediment deposit can undergo sorting when a particle size range is removed by an agency such as a river or the wind. The sorting can be quantified using the Inclusive Graphic Standard Deviation: where is the Inclusive Graphic Standard Deviation in phi units is the 84th percentile of the grain size distribution in phi units, etc.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.