Speculative execution is an optimization technique where a computer system performs some task that may not be needed. Work is done before it is known whether it is actually needed, so as to prevent a delay that would have to be incurred by doing the work after it is known that it is needed. If it turns out the work was not needed after all, most changes made by the work are reverted and the results are ignored. The objective is to provide more concurrency if extra resources are available. This approach is employed in a variety of areas, including branch prediction in pipelined processors, value prediction for exploiting value locality, prefetching memory and , and optimistic concurrency control in database systems. Speculative multithreading is a special case of speculative execution. Modern pipelined microprocessors use speculative execution to reduce the cost of conditional branch instructions using schemes that predict the execution path of a program based on the history of branch executions. In order to improve performance and utilization of computer resources, instructions can be scheduled at a time when it has not yet been determined that the instructions will need to be executed, ahead of a branch. Speculative computation was a related earlier concept. Eager evaluation Eager execution is a form of speculative execution where both sides of the conditional branch are executed; however, the results are committed only if the predicate is true. With unlimited resources, eager execution (also known as oracle execution) would in theory provide the same performance as perfect branch prediction. With limited resources, eager execution should be employed carefully, since the number of resources needed grows exponentially with each level of branch executed eagerly. Pipeline (computing) Branch predictor Predictive execution is a form of speculative execution where some outcome is predicted and execution proceeds along the predicted path until the actual result is known.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
CS-307: Introduction to multiprocessor architecture
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
CS-470: Advanced computer architecture
The course studies techniques to exploit Instruction-Level Parallelism (ILP) statically and dynamically. It also addresses some aspects of the design of domain-specific accelerators. Finally, it explo
CS-471: Advanced multiprocessor architecture
Multiprocessors are basic building blocks for all computer systems. This course covers the architecture and organization of modern multiprocessors, prevalent accelerators (e.g., GPU, TPU), and datacen
Show more
Related lectures (30)
Prediction and Speculation in Processor Design
Covers prediction and speculation techniques in processor design to enhance performance and reduce execution delays.
Transactional Memory: Hardware Concurrency Control
Explores transactional memory for hardware concurrency control, discussing locking mechanisms, performance trade-offs, and hardware changes.
Multi-Cycle MIPS Processor
Explores the design and performance analysis of a Multi-Cycle MIPS Processor compared to a Single-Cycle Processor, emphasizing benefits and downsides.
Show more
Related publications (88)

TSLAM: a tag-based object-centered monocular navigation system for augmented manual woodworking.

Hong-Bin Yang

TimberSLAM (TSLAM) is an object-centered, tag-based visual self-localization and mapping (SLAM) system for monocular RGB cameras. It was specifically developed to support a robust and augmented reality pipeline for close-range, noisy, and cluttered fabrica ...
2024

LAQy: Efficient and Reusable Query Approximations via Lazy Sampling

Anastasia Ailamaki, Periklis Chrysogelos, Viktor Sanca

Modern analytical engines rely on Approximate Query Processing (AQP) to provide faster response times than the hardware allows for exact query answering. However, existing AQP methods impose steep performance penalties as workload unpredictability increase ...
2023

Improving K-means Clustering Using Speculation

Anastasia Ailamaki, Viktor Sanca, Eleni Zapridou, Stefan Igescu

K-means is one of the fundamental unsupervised data clustering and machine learning methods. It has been well studied over the years: parallelized, approximated, and optimized for different cases and applications. With increasingly higher parallelism leadi ...
2023
Show more
Related concepts (16)
Branch predictor
In computer architecture, a branch predictor is a digital circuit that tries to guess which way a branch (e.g., an if–then–else structure) will go before this is known definitively. The purpose of the branch predictor is to improve the flow in the instruction pipeline. Branch predictors play a critical role in achieving high performance in many modern pipelined microprocessor architectures. Two-way branching is usually implemented with a conditional jump instruction.
Out-of-order execution
In computer engineering, out-of-order execution (or more formally dynamic execution) is a paradigm used in most high-performance central processing units to make use of instruction cycles that would otherwise be wasted. In this paradigm, a processor executes instructions in an order governed by the availability of input data and execution units, rather than by their original order in a program. In doing so, the processor can avoid being idle while waiting for the preceding instruction to complete and can, in the meantime, process the next instructions that are able to run immediately and independently.
CPU cache
A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations. Most CPUs have a hierarchy of multiple cache levels (L1, L2, often L3, and rarely even L4), with different instruction-specific and data-specific caches at level 1.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.