In logic, predicate abstraction is the result of creating a predicate from a sentence. If Q is any formula then the predicate abstract formed from that sentence is (λy.Q), where λ is an abstraction operator and in which every occurrence of y occurs bound by λ in (λy.Q). The resultant predicate (λx.Q(x)) is a monadic predicate capable of taking a term t as argument as in (λx.Q(x))(t), which says that the object denoted by 't' has the property of being such that Q.
The states ( λx.Q(x) )(t) ≡ Q(t/x) where Q(t/x) is the result of replacing all free occurrences of x in Q by t. This law is shown to fail in general in at least two cases: (i) when t is irreferential and (ii) when Q contains modal operators.
In modal logic the "de re / de dicto distinction" is stated as
(DE DICTO):
(DE RE): .
In (1) the modal operator applies to the formula A(t) and the term t is within the scope of the modal operator. In (2) t is not within the scope of the modal operator.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u