Switching circuit theory is the mathematical study of the properties of networks of idealized switches. Such networks may be strictly combinational logic, in which their output state is only a function of the present state of their inputs; or may also contain sequential elements, where the present state depends on the present state and past states; in that sense, sequential circuits are said to include "memory" of past states. An important class of sequential circuits are state machines. Switching circuit theory is applicable to the design of telephone systems, computers, and similar systems. Switching circuit theory provided the mathematical foundations and tools for digital system design in almost all areas of modern technology.
In an 1886 letter, Charles Sanders Peirce described how logical operations could be carried out by electrical switching circuits. During 1880–1881 he showed that NOR gates alone (or alternatively NAND gates alone) can be used to reproduce the functions of all the other logic gates, but this work remained unpublished until 1933. The first published proof was by Henry M. Sheffer in 1913, so the NAND logical operation is sometimes called Sheffer stroke; the logical NOR is sometimes called Peirce's arrow. Consequently, these gates are sometimes called universal logic gates.
In 1898, Martin Boda described a switching theory for signalling block systems.
Eventually, vacuum tubes replaced relays for logic operations. Lee De Forest's modification, in 1907, of the Fleming valve can be used as a logic gate. Ludwig Wittgenstein introduced a version of the 16-row truth table as proposition 5.101 of Tractatus Logico-Philosophicus (1921). Walther Bothe, inventor of the coincidence circuit, got part of the 1954 Nobel Prize in physics, for the first modern electronic AND gate in 1924. Konrad Zuse designed and built electromechanical logic gates for his computer Z1 (from 1935 to 1938).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Présentation des principaux composants de base de l'électronique.
Analyse de circuits à base d'amplificateurs opérationnels.
Introduction aux circuits logiques élémentaires.
Principe de la conversion
After a series of common introductory topics covering an introduction to electromagnetic compatibility, modeling techniques and selected chapters from EMC, each student will study a specific topic, wh
Welcome to the introductory course in digital design and computer architecture. In this course, we will embark on a journey into the world of digital systems, exploring the fundamental principles and
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (and) denoted as ∧, disjunction (or) denoted as ∨, and the negation (not) denoted as ¬.
In computational complexity theory and circuit complexity, a Boolean circuit is a mathematical model for combinational digital logic circuits. A formal language can be decided by a family of Boolean circuits, one circuit for each possible input length. Boolean circuits are defined in terms of the logic gates they contain. For example, a circuit might contain binary AND and OR gates and unary NOT gates, or be entirely described by binary NAND gates. Each gate corresponds to some Boolean function that takes a fixed number of bits as input and outputs a single bit.
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form , where is known as the Boolean domain and is a non-negative integer called the arity of the function.
Introduces impedances and admittances, emphasizing the role of complex numbers in circuit theory.
Explores the spatial criterion for distinguishing localized and distributed circuits based on size and wavelength, with practical examples.
Discusses criteria to distinguish between localized and distributed circuits based on time and frequency considerations.
Claude Shannon, in his famous thesis (1938), revolutionized circuit design by showing that Boolean algebra subsumes all ad-hoc methods that are used in designing switching circuits, or combinational circuits as they are commonly known today. But what is ...
Sequential circuits are combinational circuits that are separated by registers. Retiming is considered as the most promising technique for optimizing sequential circuits, that involves moving the edge-triggered registers across the combinational logic with ...
European Union COST Actions provide the opportunity for researchers who are geographically dispersed to work together towards an ambitious, multidisciplinary goal, whilst learning from each other and avoiding effort duplication. This paper gives a brief ov ...