A magneto is an electrical generator that uses permanent magnets to produce periodic pulses of alternating current. Unlike a dynamo, a magneto does not contain a commutator to produce direct current. It is categorized as a form of alternator, although it is usually considered distinct from most other alternators, which use field coils rather than permanent magnets.
Hand-cranked magneto generators were used to provide ringing current in telephone systems. Magnetos were also adapted to produce pulses of high voltage in the ignition systems of some gasoline-powered internal combustion engines to provide power to the spark plugs. Use of such ignition magnetos for ignition is now limited mainly to engines without a low-voltage electrical system, such as lawnmowers and chainsaws, and to aircraft engines, in which keeping the ignition independent of the rest of the electrical system ensures that the engine continues running in the event of alternator or battery failure. For redundancy, virtually all piston engine aircraft are fitted with two magneto systems, each supplying power to one of two spark plugs in each cylinder.
Magnetos were used for specialized isolated power systems such as arc lamp systems or lighthouses, for which their simplicity was an advantage. They have never been widely applied for the purposes of bulk electricity generation, for the same purposes or to the same extent as either dynamos or alternators. Only in a few specialised cases have they been used for power generation.
Production of electric current from a moving magnetic field was demonstrated by Faraday in 1831. The first machines to produce electric current from magnetism used permanent magnets; the dynamo machine, which used an electromagnet to produce the magnetic field, was developed later. The machine built by Hippolyte Pixii in 1832 used a rotating permanent magnet to induce alternating voltage in two fixed coils.
The first electrical machine used for an industrial process was a magneto, the Woolrich Electrical Generator.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The dynamics of ordinary matter in the Universe follows the laws of (magneto)hydrodynamics. In this course, the system of equations that describes astrophysical fluids will be discussed on the basis o
A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter. Today, the simpler alternator dominates large scale power generation, for efficiency, reliability and cost reasons. A dynamo has the disadvantages of a mechanical commutator.
In electromagnetism, excitation is the process of generating a magnetic field by means of an electric current. An electric generator or electric motor consists of a rotor spinning in a magnetic field. The magnetic field may be produced by permanent magnets or by field coils. In the case of a machine with field coils, a current must flow in the coils to generate (excite) the field, otherwise no power is transferred to or from the rotor. Field coils yield the most flexible form of magnetic flux regulation and de-regulation, but at the expense of a flow of electric current.
An alternator is a type of electric generator used in modern automobiles to charge the battery and to power the electrical system when its engine is running. Until the 1960s, automobiles used DC dynamo generators with commutators. As silicon-diode rectifiers became widely available and affordable, the alternator gradually replaced the dynamo. This was encouraged by the increasing electrical power required for cars in this period, with increasing loads from larger headlamps, electric wipers, heated rear windows, and other accessories.
The Iron and Steel Industry is one of the most carbon-intensive in the European Union, and to meet the climate agreement objectives for 2050, it must dramatically reduce its environmental footprint. The present study analyzes the potential for CO2 emission ...
Inductive power transfer technology is an attractive solution for medium voltage applications by eliminating the need for high voltage cables or wired connections in general. This paper introduces an inductive power transfer system which has multiple indep ...
Hadron therapy refers to a medical treatment that uses hadron beams (i.e. protons and ions) to deliver localized energy that suppresses cancerous cells, sparing the neighbouring healthy tissues from unwanted radiation. The major technical components of a h ...