Summary
In machine learning, a hyperparameter is a parameter whose value is used to control the learning process. By contrast, the values of other parameters (typically node weights) are derived via training. Hyperparameters can be classified as model hyperparameters, that cannot be inferred while fitting the machine to the training set because they refer to the model selection task, or algorithm hyperparameters, that in principle have no influence on the performance of the model but affect the speed and quality of the learning process. An example of a model hyperparameter is the topology and size of a neural network. Examples of algorithm hyperparameters are learning rate and batch size as well as mini-batch size. Batch size can refer to the full data sample where mini-batch size would be a smaller sample set. Different model training algorithms require different hyperparameters, some simple algorithms (such as ordinary least squares regression) require none. Given these hyperparameters, the training algorithm learns the parameters from the data. For instance, LASSO is an algorithm that adds a regularization hyperparameter to ordinary least squares regression, which has to be set before estimating the parameters through the training algorithm. The time required to train and test a model can depend upon the choice of its hyperparameters. A hyperparameter is usually of continuous or integer type, leading to mixed-type optimization problems. The existence of some hyperparameters is conditional upon the value of others, e.g. the size of each hidden layer in a neural network can be conditional upon the number of layers. Usually, but not always, hyperparameters cannot be learned using well known gradient based methods (such as gradient descent, LBFGS) - which are commonly employed to learn parameters. These hyperparameters are those parameters describing a model representation that cannot be learned by common optimization methods but nonetheless affect the loss function. An example would be the tolerance hyperparameter for errors in support vector machines.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.