Summary
A retinal implant is a visual prosthesis for restoration of sight to patients blinded by retinal degeneration. The system is meant to partially restore useful vision to those who have lost their photoreceptors due to retinal diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Retinal implants are being developed by a number of private companies and research institutions, and three types are in clinical trials: epiretinal (on the retina), subretinal (behind the retina), and suprachoroidal (between the choroid and the sclera). The implants introduce visual information into the retina by electrically stimulating the surviving retinal neurons. So far, elicited percepts had rather low resolution, and may be suitable for light perception and recognition of simple objects. Foerster was the first to discover that electrical stimulation of the occipital cortex could be used to create visual percepts, phosphenes. The first application of an implantable stimulator for vision restoration was developed by Drs. Brindley and Lewin in 1968. This experiment demonstrated the viability of creating visual percepts using direct electrical stimulation, and it motivated the development of several other implantable devices for stimulation of the visual pathway, including retinal implants. Retinal stimulation devices, in particular, have become a focus of research as approximately half of all cases of blindness are caused by retinal damage. The development of retinal implants has also been motivated in part by the advancement and success of cochlear implants, which has demonstrated that humans can regain significant sensory function with limited input. The Argus II retinal implant, manufactured by Second Sight Medical Products received market approval in the US in Feb 2013 and in Europe in Feb 2011, becoming the first approved implant. The device may help adults with RP who have lost the ability to perceive shapes and movement to be more mobile and to perform day-to-day activities.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
EE-519: Bioelectronics and biomedical microelectronics
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec