In analytical mechanics and quantum field theory, minimal coupling refers to a coupling between fields which involves only the charge distribution and not higher multipole moments of the charge distribution. This minimal coupling is in contrast to, for example, Pauli coupling, which includes the magnetic moment of an electron directly in the Lagrangian. In electrodynamics, minimal coupling is adequate to account for all electromagnetic interactions. Higher moments of particles are consequences of minimal coupling and non-zero spin. In Cartesian coordinates, the Lagrangian of a non-relativistic classical particle in an electromagnetic field is (in SI Units): where q is the electric charge of the particle, φ is the electric scalar potential, and the Ai are the components of the magnetic vector potential that may all explicitly depend on and . This Lagrangian, combined with Euler–Lagrange equation, produces the Lorentz force law and is called minimal coupling. Note that the values of scalar potential and vector potential would change during a gauge transformation, and the Lagrangian itself will pick up extra terms as well, but the extra terms in the Lagrangian add up to a total time derivative of a scalar function, and therefore still produce the same Euler–Lagrange equation. The canonical momenta are given by Note that canonical momenta are not gauge invariant, and are not physically measurable. However, the kinetic momenta are gauge invariant and physically measurable. The Hamiltonian, as the Legendre transformation of the Lagrangian, is therefore This equation is used frequently in quantum mechanics. Under a gauge transformation, where f(r,t) is any scalar function of space and time, the aforementioned Lagrangian, canonical momenta and Hamiltonian transform like which still produces the same Hamilton's equation: In quantum mechanics, the wave function will also undergo a local U(1) group transformation during the gauge transformation, which implies that all physical results must be invariant under local U(1) transformations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.