In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also ). Ernst Zermelo introduced the axiom of choice as an "unobjectionable logical principle" to prove the well-ordering theorem. One can conclude from the well-ordering theorem that every set is susceptible to transfinite induction, which is considered by mathematicians to be a powerful technique. One famous consequence of the theorem is the Banach–Tarski paradox.
Georg Cantor considered the well-ordering theorem to be a "fundamental principle of thought". However, it is considered difficult or even impossible to visualize a well-ordering of ; such a visualization would have to incorporate the axiom of choice. In 1904, Gyula Kőnig claimed to have proven that such a well-ordering cannot exist. A few weeks later, Felix Hausdorff found a mistake in the proof. It turned out, though, that in first-order logic the well-ordering theorem is equivalent to the axiom of choice, in the sense that the Zermelo–Fraenkel axioms with the axiom of choice included are sufficient to prove the well-ordering theorem, and conversely, the Zermelo–Fraenkel axioms without the axiom of choice but with the well-ordering theorem included are sufficient to prove the axiom of choice. (The same applies to Zorn's lemma.) In second-order logic, however, the well-ordering theorem is strictly stronger than the axiom of choice: from the well-ordering theorem one may deduce the axiom of choice, but from the axiom of choice one cannot deduce the well-ordering theorem.
There is a well-known joke about the three statements, and their relative amenability to intuition:The axiom of choice is obviously true, the well-ordering principle obviously false, and who can tell about Zorn's lemma?
The well-ordering theorem follows from the axiom of choice as follows.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
This seminar teaches the participants to use advanced Python concepts for writing easier to read, more flexible and faster code.
It teaches concepts in a hands-on and tangible fashion, providing examp
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, nth, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element").
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions. The paradox had already been discovered independently in 1899 by the German mathematician Ernst Zermelo. However, Zermelo did not publish the idea, which remained known only to David Hilbert, Edmund Husserl, and other academics at the University of Göttingen.
Ernst Friedrich Ferdinand Zermelo (zɜrˈmɛloʊ, tsɛɐ̯ˈmeːlo; 27 July 1871 21 May 1953) was a German logician and mathematician, whose work has major implications for the foundations of mathematics. He is known for his role in developing Zermelo–Fraenkel axiomatic set theory and his proof of the well-ordering theorem. Furthermore, his 1929 work on ranking chess players is the first description of a model for pairwise comparison that continues to have a profound impact on various applied fields utilizing this method.
Dielectric metasurfaces require the integration of large index contrast materials with accurate control over position and size for high optical efficiency. Their fabrication usually relies on well-established lithographic techniques. While lithography bear ...
IMPACT STATEMENT Experiments and theory are highlighting chemical ordering in high-entropy alloys (HEAs) as important for mechanical properties but the high strength in CoCrFeNiPd is predicted here to be achievable in the random alloy due to the large misf ...