In quantum mechanics, fractionalization is the phenomenon whereby the quasiparticles of a system cannot be constructed as combinations of its elementary constituents. One of the earliest and most prominent examples is the fractional quantum Hall effect, where the constituent particles are electrons but the quasiparticles carry fractions of the electron charge. Fractionalization can be understood as deconfinement of quasiparticles that together are viewed as comprising the elementary constituents. In the case of spin–charge separation, for example, the electron can be viewed as a bound state of a 'spinon' and a 'chargon', which under certain conditions can become free to move separately.
Quantized Hall conductance was discovered in 1980, related to the electron charge. Laughlin proposed a fluid of fractional charges in 1983, to explain the Fractional quantum Hall effect seen in 1982, for which he shared the 1998 Physics Nobel Prize. In 1997, experiments directly observed an electric current of one-third charge. The one-fifth charge was seen in 1999 and various odd fractions have since been detected.
Disordered magnetic materials were later shown to form interesting spin phases. Spin fractionalization was seen in spin ices in 2009 and spin liquids in 2012.
Fractional charges continue to be an active topic in condensed matter physics. Studies of these quantum phases impact understanding of superconductivity, and insulators with surface transport for topological quantum computers.
Many-body effects in complicated condensed materials lead to emergent properties that can be described as quasiparticles existing in the substance. Electron behavior in solids can be considered as quasi-particle magnons, excitons, holes, and charges with different effective mass. Spinons, chargons, and anyons cannot be considered elementary particle combinations. Different quantum statistics have been seen; Anyons wavefunctions gain a continuous phase in exchange:
It has been realized many insulators have a conducting surface of 2D quantum electron gas states.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Holons are one of three quasiparticles, along with spinons and orbitons, that electrons in solids are able to split into during the process of spin–charge separation, when extremely tightly confined at temperatures close to absolute zero. The electron can always be theoretically considered as a bound state of the three, with the spinon carrying the spin of the electron, the orbiton carrying the orbital location and the holon carrying the charge, but in certain conditions they can become deconfined and behave as independent particles.
Spinons are one of three quasiparticles, along with holons and orbitons, that electrons in solids are able to split into during the process of spin–charge separation, when extremely tightly confined at temperatures close to absolute zero. The electron can always be theoretically considered as a bound state of the three, with the spinon carrying the spin of the electron, the orbiton carrying the orbital location and the holon carrying the charge, but in certain conditions they can behave as independent quasiparticles.
In physics, quasiparticles and collective excitations are closely related phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For example, as an electron travels through a semiconductor, its motion is disturbed in a complex way by its interactions with other electrons and with atomic nuclei. The electron behaves as though it has a different effective mass travelling unperturbed in vacuum.
Explores shot noise in quantum point contacts, charge fluctuations, experimental results, and temperature dependence of quasiparticles.
,
The interplay of topological characteristics in real space and reciprocal space can lead to the emergence of unconventional topological phases. In this Letter, we implement a novel mechanism for generating higher-Chern flat bands on the basis of twisted bi ...
Excitons play an essential role in the optical response of two-dimensional materials. These are bound states showing up in the band gaps of many-body systems and are conceived as quasiparticles formed by an electron and a hole. By performing real-time simu ...
Spin waves (SWs) are collective excitations of the spin ensemble in systems with magnetic order. In quantum mechanics, a SW is known as a magnon, which is the quasiparticle describing the quantized nature of these wave-like excitations. Magnonics is the re ...