Summary
Electron ionization (EI, formerly known as electron impact ionization and electron bombardment ionization) is an ionization method in which energetic electrons interact with solid or gas phase atoms or molecules to produce ions. EI was one of the first ionization techniques developed for mass spectrometry. However, this method is still a popular ionization technique. This technique is considered a hard (high fragmentation) ionization method, since it uses highly energetic electrons to produce ions. This leads to extensive fragmentation, which can be helpful for structure determination of unknown compounds. EI is the most useful for organic compounds which have a molecular weight below 600. Also, several other thermally stable and volatile compounds in solid, liquid and gas states can be detected with the use of this technique when coupled with various separation methods. Electron ionization was first described in 1918 by Canadian-American Physicist Arthur J. Dempster in the article of "A new method of positive ray analysis." It was the first modern mass spectrometer and used positive rays to determine the ratio of the mass to charge of various constituents. In this method, the ion source used an electron beam directed at a solid surface. The anode was made cylindrical in shape using the metal which was to be studied. Subsequently, it was heated by a concentric coil and then was bombarded with electrons. Using this method, the two isotopes of lithium and three isotopes of magnesium, with their atomic weights and relative proportions, were able to be determined. Since then this technique has been used with further modifications and developments. The use of a focused monoenergetic beam of electrons for ionization of gas phase atoms and molecules was developed by Bleakney in 1929. In this process, an electron from the analyte molecule (M) is expelled during the collision process to convert the molecule to a positive ion with an odd number of electrons.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.