Concept

Löwenheim–Skolem theorem

Summary
In mathematical logic, the Löwenheim–Skolem theorem is a theorem on the existence and cardinality of models, named after Leopold Löwenheim and Thoralf Skolem. The precise formulation is given below. It implies that if a countable first-order theory has an infinite model, then for every infinite cardinal number κ it has a model of size κ, and that no first-order theory with an infinite model can have a unique model up to isomorphism. As a consequence, first-order theories are unable to control the cardinality of their infinite models. The (downward) Löwenheim–Skolem theorem is one of the two key properties, along with the compactness theorem, that are used in Lindström's theorem to characterize first-order logic. In general, the Löwenheim–Skolem theorem does not hold in stronger logics such as second-order logic. In its general form, the Löwenheim–Skolem Theorem states that for every signature σ, every infinite σ-structure M and every infinite cardinal number κ ≥ σ, there is a σ-structure N such that N = κ and such that if κ < M then N is an elementary substructure of M; if κ > M then N is an elementary extension of M. The theorem is often divided into two parts corresponding to the two cases above. The part of the theorem asserting that a structure has elementary substructures of all smaller infinite cardinalities is known as the downward Löwenheim–Skolem Theorem. The part of the theorem asserting that a structure has elementary extensions of all larger cardinalities is known as the upward Löwenheim–Skolem Theorem. Below we elaborate on the general concept of signatures and structures. A signature consists of a set of function symbols Sfunc, a set of relation symbols Srel, and a function representing the arity of function and relation symbols. (A nullary function symbol is called a constant symbol.) In the context of first-order logic, a signature is sometimes called a language. It is called countable if the set of function and relation symbols in it is countable, and in general the cardinality of a signature is the cardinality of the set of all the symbols it contains.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.