Concept

Oxohalide

In chemistry, molecular oxohalides (oxyhalides) are a group of chemical compounds in which both oxygen and halogen atoms are attached to another chemical element A in a single molecule. They have the general formula , where X is a halogen. Known oxohalides have fluorine (F), chlorine (Cl), bromine (Br), and/or iodine (I) in their molecules. The element A may be a main group element, a transition element, a rare earth element or an actinide. The term oxohalide, or oxyhalide, may also refer to minerals and other crystalline substances with the same overall chemical formula, but having an ionic structure. Oxohalides can be seen as compounds intermediate between oxides and halides. There are three general methods of synthesis: Partial oxidation of a halide: In this example, the oxidation state increases by two and the electrical charge is unchanged. Partial halogenation of an oxide: Oxide replacement: In addition, various oxohalides can be made by halogen exchange reactions and this reaction can also lead to the formation of mixed oxohalides such as and . In relation to the oxide or halide, for a given oxidation state of an element A, if two halogen atoms replace one oxygen atom, or vice versa, the overall charge on the molecule is unchanged and the coordination number of the central atom decreases by one. For example, both phosphorus oxychloride () and phosphorus pentachloride, () are neutral covalent compounds of phosphorus in the +5 oxidation state. If an oxygen atom is simply replaced by a halogen atom the charge increases by +1, but the coordination number is unchanged. This is illustrated by the reaction of a mixture of a chromate or dichromate salt and potassium chloride with concentrated sulfuric acid. The chromyl chloride produced has no electrical charge and is a volatile covalent molecule that can be distilled out of the reaction mixture. Oxohalides of elements in high oxidation states are strong oxidizing agents, with oxidizing power similar to the corresponding oxide or halide. Most oxohalides are easily hydrolyzed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.