Various theories of ore genesis explain how the various types of mineral deposits form within Earth's crust. Ore-genesis theories vary depending on the mineral or commodity examined.
Ore-genesis theories generally involve three components: source, transport or conduit, and trap. (This also applies to the petroleum industry: petroleum geologists originated this analysis.)
Source is required because metal must come from somewhere, and be liberated by some process.
Transport is required first to move the metal-bearing fluids or solid minerals into their current position, and refers to the act of physically moving the metal, as well as to chemical or physical phenomena which encourage movement.
Trapping is required to concentrate the metal via some physical, chemical, or geological mechanism into a concentration which forms mineable ore.
The biggest deposits form when the source is large, the transport mechanism is efficient, and the trap is active and ready at the right time.
Fractional crystallization: separates ore and non-ore minerals according to their crystallization temperature. As early crystallizing minerals form from magma, they incorporate certain elements, some of which are metals. These crystals may settle onto the bottom of the intrusion, concentrating ore minerals there. Chromite and magnetite are ore minerals that form in this way.
Liquid immiscibility: sulfide ores containing copper, nickel, or platinum may form from this process. As a magma changes, parts of it may separate from the main body of magma. Two liquids that will not mix are called immiscible; oil and water are an example. In magmas, sulfides may separate and sink below the silicate-rich part of the intrusion or be injected into the rock surrounding it. These deposits are found in mafic and ultramafic rocks.
These processes are the physicochemical phenomena and reactions caused by movement of hydrothermal water within the crust, often as a consequence of magmatic intrusion or tectonic upheavals. The foundations of hydrothermal processes are the source-transport-trap mechanism.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
Uranium ore deposits are economically recoverable concentrations of uranium within the Earth's crust. Uranium is one of the most common elements in the Earth's crust, being 40 times more common than silver and 500 times more common than gold. It can be found almost everywhere in rock, soil, rivers, and oceans. The challenge for commercial uranium extraction is to find those areas where the concentrations are adequate to form an economically viable deposit. The primary use for uranium obtained from mining is in fuel for nuclear reactors.
Volcanogenic massive sulfide ore deposits, also known as VMS ore deposits, are a type of metal sulfide ore deposit, mainly copper-zinc which are associated with and created by volcanic-associated hydrothermal events in submarine environments. These deposits are also sometimes called volcanic-hosted massive sulfide (VHMS) deposits. The density generally is 4500 kg/m3. They are predominantly stratiform accumulations of sulfide minerals that precipitate from hydrothermal fluids on or below the seafloor in a wide range of ancient and modern geological settings.
Porphyry copper deposits are copper ore bodies that are formed from hydrothermal fluids that originate from a voluminous magma chamber several kilometers below the deposit itself. Predating or associated with those fluids are vertical dikes of porphyritic intrusive rocks from which this deposit type derives its name. In later stages, circulating meteoric fluids may interact with the magmatic fluids. Successive envelopes of hydrothermal alteration typically enclose a core of disseminated ore minerals in often stockwork-forming hairline fractures and veins.
Permeability is a key physical property across all spatial scales in the Earth’s crust and exerts significant control on the behaviour of Earth systems, with implications for natural hazards (e.g., earthquakes, slope instabilities, volcanic eruptions) and ...
Hydraulic stimulation of enhanced deep geothermal reservoirs commonly targets pre-existing joint networks with the goal of increasing reservoir permeability. Here, we study the permeability and strength of joint-free and jointed Buntsandstein sandstones fr ...
2023
, , ,
Curbing and capturing CO2 emissions is no longer enough to cope with the demanding environmental challenges of the coming years. Long-term storage technologies need deployment, to help industrial sectors to reach ambitious emission standards. Mineral carbo ...