In cryptography, a pseudorandom function family, abbreviated PRF, is a collection of efficiently-computable functions which emulate a random oracle in the following way: no efficient algorithm can distinguish (with significant advantage) between a function chosen randomly from the PRF family and a random oracle (a function whose outputs are fixed completely at random). Pseudorandom functions are vital tools in the construction of cryptographic primitives, especially secure encryption schemes. Pseudorandom functions are not to be confused with pseudorandom generators (PRGs). The guarantee of a PRG is that a single output appears random if the input was chosen at random. On the other hand, the guarantee of a PRF is that all its outputs appear random, regardless of how the corresponding inputs were chosen, as long as the function was drawn at random from the PRF family. A pseudorandom function family can be constructed from any pseudorandom generator, using, for example, the "GGM" construction given by Goldreich, Goldwasser, and Micali. While in practice, block ciphers are used in most instances where a pseudorandom function is needed, they do not, in general, constitute a pseudorandom function family, as block ciphers such as AES are defined for only limited numbers of input and key sizes. A PRF is an efficient (i.e. computable in polynomial time), deterministic function that maps two distinct sets (domain and range) and looks like a truly random function. Essentially, a truly random function would just be composed of a lookup table filled with uniformly distributed random entries. However, in practice, a PRF is given an input string in the domain and a hidden random seed and runs multiple times with the same input string and seed, always returning the same value. Nonetheless, given an arbitrary input string, the output looks random if the seed is taken from a uniform distribution. A PRF is considered to be good if its behavior is indistinguishable from a truly random function.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
COM-401: Cryptography and security
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
COM-501: Advanced cryptography
This course reviews some failure cases in public-key cryptography. It introduces some cryptanalysis techniques. It also presents fundamentals in cryptography such as interactive proofs. Finally, it pr
Related lectures (13)
The Power of Interaction: Zero-Knowledge Construction
Explores zero-knowledge construction, setup models, and the power of interaction in cryptographic protocols, including Sigma Protocol and NP Zero-Knowledge Proofs.
Commitment Scheme and PRNG
Explores the commitment scheme, key derivation function, and pseudorandom generator in cryptographic protocols, emphasizing their role in ensuring data integrity and authentication.
Cryptanalysis: The Power of Interaction
Explores the power of interaction in cryptographic primitives and conventional cryptanalysis techniques.
Show more
Related publications (32)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.