In mathematics, and especially gauge theory, the Bogomolny equation for magnetic monopoles is the equation
where is the curvature of a connection on a principal -bundle over a 3-manifold , is a section of the corresponding adjoint bundle, is the exterior covariant derivative induced by on the adjoint bundle, and is the Hodge star operator on . These equations are named after E. B. Bogomolny and were studied extensively by Michael Atiyah and Nigel Hitchin.
The equations are a dimensional reduction of the self-dual Yang–Mills equations from four dimensions to three dimensions, and correspond to global minima of the appropriate action. If is closed, there are only trivial (i.e. flat) solutions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In differential geometry and gauge theory, the Nahm equations are a system of ordinary differential equations introduced by Werner Nahm in the context of the Nahm transform – an alternative to Ward's twistor construction of monopoles. The Nahm equations are formally analogous to the algebraic equations in the ADHM construction of instantons, where finite order matrices are replaced by differential operators. Deep study of the Nahm equations was carried out by Nigel Hitchin and Simon Donaldson.