Summary
Limit State Design (LSD), also known as Load And Resistance Factor Design (LRFD), refers to a design method used in structural engineering. A limit state is a condition of a structure beyond which it no longer fulfills the relevant design criteria. The condition may refer to a degree of loading or other actions on the structure, while the criteria refer to structural integrity, fitness for use, durability or other design requirements. A structure designed by LSD is proportioned to sustain all actions likely to occur during its design life, and to remain fit for use, with an appropriate level of reliability for each limit state. Building codes based on LSD implicitly define the appropriate levels of reliability by their prescriptions. The method of limit state design, developed in the USSR and based on research led by Professor N.S. Streletski, was introduced in USSR building regulations in 1955. Limit state design requires the structure to satisfy two principal criteria: the ultimate limit state (ULS) and the serviceability limit state (SLS). Any design process involves a number of assumptions. The loads to which a structure will be subjected must be estimated, sizes of members to check must be chosen and design criteria must be selected. All engineering design criteria have a common goal: that of ensuring a safe structure and ensuring the functionality of the structure. A clear distinction is made between the ultimate state (US) and the ultimate limit state (ULS). The US is a physical situation that involves either excessive deformations leading and approaching collapse of the component under consideration or the structure as a whole, as relevant, or deformations exceeding pre-agreed values. It involves, of course, considerable inelastic (plastic) behavior of the structural scheme and residual deformations. In contrast, the ULS is not a physical situation but rather an agreed computational condition that must be fulfilled, among other additional criteria, in order to comply with the engineering demands for strength and stability under design loads.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.