The initial singularity is a singularity predicted by some models of the Big Bang theory to have existed before the Big Bang and thought to have contained all the energy and spacetime of the Universe. The instant immediately following the initial singularity is part of the Planck epoch, the earliest period of time in the history of our universe. The use of only general relativity to predict what happened in the beginnings of the Universe has been heavily criticized, as quantum mechanics becomes a significant factor in the high-energy environment of the earliest Universe, and general relativity on its own fails to make accurate predictions. In response to the inaccuracy of considering only general relativity, as in the traditional model of the Big Bang, alternative theoretical formulations for the beginning of the Universe have been proposed, including a string theory-based model in which two branes, enormous membranes much larger than the Universe, collided, creating mass and energy. Although there is no direct evidence for a singularity of infinite density, the cosmic microwave background is evidence that the universe expanded from a very hot, dense state. Various new models of what preceded and caused the Big Bang have been proposed as a result of the problems created by quantum mechanics. One model, using loop quantum gravity, aims to explain the beginnings of the Universe through a series of Big Bounces, in which quantum fluctuations cause the Universe to expand. This procreation also predicts a cyclic model of universes, with a new universe being created after an old one is destroyed, each with different physical constants. Another procreation based on M-theory and observations of the cosmic microwave background (CMB), states that the Universe is but one of many in a multiverse, and has budded off from another universe as a result of quantum fluctuations, as opposed to our Universe being all that exists.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.