Concept

Opposed-piston engine

An opposed-piston engine is a piston engine in which each cylinder has a piston at both ends, and no cylinder head. Petrol and diesel opposed-piston engines have been used mostly in large-scale applications such as ships, military tanks, and factories. Current manufacturers of opposed-piston engines include Cummins, Achates Power and Fairbanks-Morse Defense (FMDefense). Compared to contemporary two-stroke engines, which used a conventional design of one piston per cylinder, the advantages of the opposed-piston engine have been recognized as: Eliminating the cylinder head and valve-train, which reduces weight, complexity, cost, heat loss, and friction loss of the engine. Creating a uniflow-scavenged movement of gas through the combustion chamber, which avoided the drawbacks associated with the contemporary crossflow-scavenged designs (however later advancements have provided methods for achieving uniflow scavenging in conventional piston engine designs). A reduced height of the engine The main drawback was that the power from the two opposing pistons have to be geared together. This added weight and complexity when compared to conventional piston engines, which use a single crankshaft as the power output. The most common layout was two crankshafts, with the crankshafts geared together (in either the same direction or opposing directions). The Koreyvo, Jumo, and Napier Deltic engines used one piston per cylinder to expose an intake port, and the other to expose an exhaust port. Each piston is referred to as either an intake piston or an exhaust piston, depending on its function in this regard. This layout gives superior scavenging, as gas flow through the cylinder is axial rather than radial, and simplifies design of the piston crowns. In the Jumo 205 and its variants, the upper crankshaft serves the exhaust pistons, and the lower crankshaft the intake pistons. In designs using multiple cylinder banks, each big end bearing serves one inlet and one exhaust piston, using a forked connecting rod for the exhaust piston.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
ChE-414: Thermodynamics of energy conversion and storage
The course is an introduction to the energy conversion. It focusses on the thermodynamics of the engines and systems for the conversion of energy from fossil fuels and renewable resources. The relevan
CS-491: Introduction to IT consulting
This course is an introduction to the alignment of enterprise needs with the possibilities offered by Information Technology (IT). Using a simulated business case, we explore how to define the require
ChE-204: Introduction to transport phenomena
This course aims at understanding the basic equations behind macroscopic and microscopic transport phenomena (mass, heat and momentum).
Show more
Related publications (10)
Related people (1)
Related concepts (6)
Internal combustion engine
An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons (piston engine), turbine blades (gas turbine), a rotor (Wankel engine), or a nozzle (jet engine).
Piston
A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from expanding gas in the cylinder to the crankshaft via a piston rod and/or connecting rod. In a pump, the function is reversed and force is transferred from the crankshaft to the piston for the purpose of compressing or ejecting the fluid in the cylinder.
Power-to-weight ratio
Power-to-weight ratio (PWR, also called specific power, or power-to-mass ratio) is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement of actual performance of any engine or power source. It is also used as a measurement of performance of a vehicle as a whole, with the engine's power output being divided by the weight (or mass) of the vehicle, to give a metric that is independent of the vehicle's size.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.