Summary
An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm cell. The resulting fusion of these two cells produces a single-celled zygote that undergoes many cell divisions that produce cells known as blastomeres. The blastomeres are arranged as a solid ball that when reaching a certain size, called a morula, takes in fluid to create a cavity called a blastocoel. The structure is then termed a blastula, or a blastocyst in mammals. The mammalian blastocyst hatches before implantating into the endometrial lining of the womb. Once implanted the embryo will continue its development through the next stages of gastrulation, neurulation, and organogenesis. Gastrulation is the formation of the three germ layers that will form all of the different parts of the body. Neurulation forms the nervous system, and organogenesis is the development of all the various tissues and organs of the body. A newly developing human is typically referred to as an embryo until the ninth week after conception, when it is then referred to as a fetus. In other multicellular organisms, the word "embryo" can be used more broadly to any early developmental or life cycle stage prior to birth or hatching. First attested in English in the mid-14c., the word embryon derives from Medieval Latin embryo, itself from Greek ἔμβρυον (embruon), lit. "young one", which is the neuter of ἔμβρυος (embruos), lit. "growing in", from ἐν (en), "in" and βρύω (bruō), "swell, be full"; the proper Latinized form of the Greek term would be embryum. Animal embryonic development In animals, fertilization begins the process of embryonic development with the creation of a zygote, a single cell resulting from the fusion of gametes (e.g. egg and sperm). The development of a zygote into a multicellular embryo proceeds through a series of recognizable stages, often divided into cleavage, blastula, gastrulation, and organogenesis.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.