In mathematics, the Vámos matroid or Vámos cube is a matroid over a set of eight elements that cannot be represented as a matrix over any field. It is named after English mathematician Peter Vámos, who first described it in an unpublished manuscript in 1968.
The Vámos matroid has eight elements, which may be thought of as the eight vertices of a cube or cuboid. The matroid has rank 4: all sets of three or fewer elements are independent, and 65 of the 70 possible sets of four elements are also independent. The five exceptions are four-element circuits in the matroid. Four of these five circuits are formed by faces of the cuboid (omitting two opposite faces). The fifth circuit connects two opposite edges of the cuboid, each of which is shared by two of the chosen four faces.
Another way of describing the same structure is that it has two elements for each vertex of the diamond graph, and a four-element circuit for each edge of the diamond graph.
The Vámos matroid is a paving matroid, meaning that all of its circuits have size at least equal to its rank.
The Vámos matroid is isomorphic to its dual matroid, but it is not identically self-dual (the isomorphism requires a nontrivial permutation of the matroid elements).
The Vámos matroid cannot be represented over any field. That is, it is not possible to find a vector space, and a system of eight vectors within that space, such that the matroid of linear independence of these vectors is isomorphic to the Vámos matroid. Indeed, it is one of the smallest non-representable matroids, and served as a counterexample to a conjecture of Ingleton that the matroids on eight or fewer elements were all representable.
The Vámos matroid is a forbidden minor for the matroids representable over a field , whenever has five or more elements. However, it is not possible to test in polynomial time whether it is a minor of a given matroid , given access to through an independence oracle.
The Vámos matroid is not algebraic.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the mathematical theory of matroids, the rank of a matroid is the maximum size of an independent set in the matroid. The rank of a subset S of elements of the matroid is, similarly, the maximum size of an independent subset of S, and the rank function of the matroid maps sets of elements to their ranks. The rank function is one of the fundamental concepts of matroid theory via which matroids may be axiomatized. Matroid rank functions form an important subclass of the submodular set functions.
In the mathematical theory of matroids, a matroid representation is a family of vectors whose linear independence relation is the same as that of a given matroid. Matroid representations are analogous to group representations; both types of representation provide abstract algebraic structures (matroids and groups respectively) with concrete descriptions in terms of linear algebra. A linear matroid is a matroid that has a representation, and an F-linear matroid (for a field F) is a matroid that has a representation using a vector space over F.
In combinatorics, a branch of mathematics, a matroid ˈmeɪtrɔɪd is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice.
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
Covers the concept of matroids, focusing on matroid intersection and the properties of subsets of a ground set.
Introduces greedy algorithms and matroids, highlighting their efficiency in solving optimization problems.
Covers submodular functions and their minimization, emphasizing diminishing returns and the Lovász Extension.
Submodular functions are a widely studied topic in theoretical computer science. They have found several applications both theoretical and practical in the fields of economics, combinatorial optimization and machine learning. More recently, there have also ...
We present new techniques to analyze natural local search algorithms for several variants of the max-sum diversification problem which, in its most basic form, is as follows: given an n-point set X subset of R-d and an integer k, select k points in X so th ...
INFORMS2019
This paper investigates entropic matroids, that is, matroids whose rank function is given as the Shannon entropy of random variables. In particular, we consider p-entropic matroids, for which the random variables each have support of cardinality p. We draw ...