The largest remainder method (also known as Hare–Niemeyer method, Hamilton method or as Vinton's method) is one way of allocating seats proportionally for representative assemblies with party list voting systems. It contrasts with various highest averages methods (also known as divisor methods).
The largest remainder method requires the numbers of votes for each party to be divided by a quota representing the number of votes required for a seat (i.e. usually the total number of votes cast divided by the number of seats, or some similar formula). The result for each party will usually consist of an integer part plus a fractional remainder. Each party is first allocated a number of seats equal to their integer. This will generally leave some remainder seats unallocated: the parties are then ranked on the basis of the fractional remainders, and the parties with the largest remainders are each allocated one additional seat until all the seats have been allocated. This gives the method its name.
There are several possibilities for the quota. The most common are:
the Hare quota and the Droop quota. The use of a particular quota with the largest remainders method is often abbreviated as "LR-[quota name]", such as "LR-Droop".
The Hare (or simple) quota is defined as follows
It is used for legislative elections in Russia (with a 5% exclusion threshold since 2016), Ukraine (5% threshold), Bulgaria (4% threshold), Lithuania (5% threshold for party and 7% threshold for coalition), Tunisia, Taiwan (5% threshold), Namibia and Hong Kong. The Hamilton method of apportionment is actually a largest-remainder method which uses the Hare Quota. It is named after Alexander Hamilton, who invented the largest-remainder method in 1792. It was first adopted to apportion the U.S. House of Representatives every ten years between 1852 and 1900.
The Droop quota is the integer part of
and is applied in elections in South Africa. The Hagenbach-Bischoff quota is virtually identical, being
either used as a fraction or rounded up.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A highest-averages method, also called a divisor method, is a class of methods for allocating seats in a parliament among agents such as political parties or federal states. A divisor method is an iterative method: at each iteration, the number of votes of each party is divided by its divisor, which is a function of the number of seats (initially 0) currently allocated to that party. The next seat is allocated to the party whose resulting ratio is largest.
An electoral system or voting system is a set of rules that determine how elections and referendums are conducted and how their results are determined. Electoral systems are used in politics to elect governments, while non-political elections may take place in business, non-profit organisations and informal organisations. These rules govern all aspects of the voting process: when elections occur, who is allowed to vote, who can stand as a candidate, how ballots are marked and cast, how the ballots are counted, how votes translate into the election outcome, limits on campaign spending, and other factors that can affect the result.
The Hare quota (also known as the simple quota) is a formula used under some forms of proportional representation. In these voting systems the quota is the number of votes that guarantees a candidate, or a party in some cases, captures a seat. The Hare quota is the total number of votes divided by the number of seats to be filled. This is the simplest quota, but the Droop quota is mostly used currently. The Hare quota can be used in the single transferable vote (STV-Hare) system and the largest remainder method (LR-Hare) and other quota rule compatible methods of party-list proportional representation.
Explores trajectories and isoclines in mechanical systems using phase plans and different representation methods.
Discusses election methods' desirable properties, multi-winner methods, district representation, gerrymandering, and the tyranny of the majority.
To assess the effect of an 8-oxoguanine (8OG) defect base on the vertical ionization energies (VIEs) and electron affinities (VEAs) of DNA, density functional theory calculations were carried out for native and defect DNA bases and nucleotides, as well as ...